Probabilistic Tabu search with multiple neighborhoods for the Disjunctively Constrained Knapsack Problem

Given a set of items, each with a profit and a weight and a conflict graph describing incompatibilities between items, the Disjunctively Constrained Knapsack Problem is to select the maximum profit set of compatible items while satisfying the knapsack capacity constraint. We develop a probabilistic tabu search heuristic with multiple neighborhood structures. The proposed algorithm is evaluated on a total of 50 benchmark instances from the literature up to 1000 items. Computational results disclose that the proposed tabu search method outperforms recent state-of-the-art approaches. In particular, our approach is able to reach 46 best known solutions and discover 8 new best known solutions out of 50 benchmark instances.

[1]  Lei Wu,et al.  A hybrid guided neighborhood search for the disjunctively constrained knapsack problem , 2015 .

[2]  Michel Gendreau,et al.  Heuristics and lower bounds for the bin packing problem with conflicts , 2004, Comput. Oper. Res..

[3]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[4]  Arnaud Fréville,et al.  The multidimensional 0-1 knapsack problem: An overview , 2004, Eur. J. Oper. Res..

[5]  Klaus Jansen,et al.  An Approximation Scheme for Bin Packing with Conflicts , 1998, J. Comb. Optim..

[6]  Ruslan Sadykov,et al.  Bin Packing with Conflicts: A Generic Branch-and-Price Algorithm , 2013, INFORMS J. Comput..

[7]  Manuel Laguna,et al.  Tabu Search , 1997 .

[8]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[9]  Flávio Keidi Miyazawa,et al.  Approaches for the 2D 0-1 knapsack problem with conflict graphs , 2013, CLEI.

[10]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[11]  El-Ghazali Talbi,et al.  The min-conflict packing problem , 2012, Comput. Oper. Res..

[12]  Leah Epstein,et al.  On Bin Packing with Conflicts , 2008, SIAM J. Optim..

[13]  Saïd Hanafi,et al.  The Multidimensional 0-1 Knapsack Problem—Bounds and Computational Aspects , 2005, Ann. Oper. Res..

[14]  Takeo Yamada,et al.  Heuristic and Exact Algorithms for the Disjunctively Constrained Knapsack Problem , 2002 .

[15]  Leah Epstein,et al.  Two-dimensional packing with conflicts , 2007, Acta Informatica.

[16]  Mhand Hifi,et al.  A reactive local search-based algorithm for the disjunctively constrained knapsack problem , 2006, J. Oper. Res. Soc..

[17]  Ulrich Pferschy,et al.  The Knapsack Problem with Conflict Graphs , 2009, J. Graph Algorithms Appl..

[18]  Lei Wu,et al.  A Parallel Large Neighborhood Search-Based Heuristic for the Disjunctively Constrained Knapsack Problem , 2014, 2014 IEEE International Parallel & Distributed Processing Symposium Workshops.

[19]  Mhand Hifi,et al.  Reduction strategies and exact algorithms for the disjunctively constrained knapsack problem , 2007, Comput. Oper. Res..

[20]  G. Dantzig Discrete-Variable Extremum Problems , 1957 .

[21]  Michel Gendreau,et al.  A tabu search procedure for multicommodity location/allocation with balancing requirements , 1992, Ann. Oper. Res..

[22]  Saïd Hanafi,et al.  On the Convergence of Tabu Search , 2001, J. Heuristics.

[23]  David Pisinger,et al.  Using Decomposition Techniques and Constraint Programming for Solving the Two-Dimensional Bin-Packing Problem , 2007, INFORMS J. Comput..

[24]  Mhand Hifi,et al.  An iterative rounding search-based algorithm for the disjunctively constrained knapsack problem , 2014 .

[25]  Philippe Michelon,et al.  A multi-level search strategy for the 0-1 Multidimensional Knapsack Problem , 2010, Discret. Appl. Math..

[26]  Fred W. Glover,et al.  Tabu Thresholding: Improved Search by Nonmonotonic Trajectories , 1995, INFORMS J. Comput..

[27]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[28]  Mhand Hifi,et al.  A first level scatter search for disjunctively constrained knapsack problems , 2011, 2011 International Conference on Communications, Computing and Control Applications (CCCA).

[29]  Saïd Hanafi,et al.  An efficient tabu search approach for the 0-1 multidimensional knapsack problem , 1998, Eur. J. Oper. Res..

[30]  Mhand Hifi,et al.  Local branching-based algorithm for the disjunctively constrained knapsack problem , 2009 .

[31]  Michel Gendreau,et al.  Diversification strategies in tabu search algorithms for the maximum clique problem , 1996, Ann. Oper. Res..

[32]  Mhand Hifi,et al.  Local branching-based algorithm for the disjunctively constrained knapsack problem , 2009, 2009 International Conference on Computers & Industrial Engineering.

[33]  El-Ghazali Talbi,et al.  New lower bounds for bin packing problems with conflicts , 2010, Eur. J. Oper. Res..