Noncontact atomic force microscopy: Bond imaging and beyond

[1]  Jiong Lu,et al.  Substrate induced strain for on-surface transformation and synthesis. , 2020, Nanoscale.

[2]  H. Ebert,et al.  Atomically Resolved Chemical Reactivity of Small Fe Clusters. , 2020, Physical review letters.

[3]  Kristof T. Schütt,et al.  Autonomous robotic nanofabrication with reinforcement learning , 2020, Science Advances.

[4]  S. Hecht,et al.  Covalent on-surface polymerization , 2020, Nature Chemistry.

[5]  Saeed Amirjalayer,et al.  High resolution noncontact atomic force microscopy imaging with oxygen-terminated copper tips at 78 K. , 2020, Nanoscale.

[6]  L. Chi,et al.  Chemical Synthesis at Surfaces with an Atomic Precision: Taming Complexity and Perfection. , 2019, Angewandte Chemie.

[7]  W. Hieringer,et al.  On-Surface Synthesis and Characterization of a Cycloarene: C108 Graphene Ring. , 2019, Journal of the American Chemical Society.

[8]  Alex J. Lee,et al.  Simulating noncontact atomic force microscopy images , 2019 .

[9]  P. Jelínek,et al.  Strain-induced isomerization in one-dimensional metal-organic chains. , 2019, Angewandte Chemie.

[10]  Qiang Sun,et al.  On-surface synthesis of polyazulene with 2,6-connectivity. , 2019, Chemical communications.

[11]  M. Melle‐Franco,et al.  Revisiting Kekulene: Synthesis and Single-Molecule Imaging , 2019, Journal of the American Chemical Society.

[12]  E. Wang,et al.  Advances in Atomic Force Microscopy: Weakly Perturbative Imaging of the Interfacial Water , 2019, Front. Chem..

[13]  H. Ebert,et al.  Chemical bond formation showing a transition from physisorption to chemisorption , 2019, Science.

[14]  Qiang Sun,et al.  On-surface synthesis and characterization of individual polyacetylene chains , 2019, Nature Chemistry.

[15]  Sergei V. Kalinin,et al.  Materials science in the artificial intelligence age: high-throughput library generation, machine learning, and a pathway from correlations to the underpinning physics , 2019, MRS communications.

[16]  P. Jelínek,et al.  Heterochiral recognition among functionalized heptahelicenes on noble metal surfaces. , 2019, Chemical communications.

[17]  H. Anderson,et al.  An sp-hybridized molecular carbon allotrope, cyclo[18]carbon , 2019, Science.

[18]  N. Moll,et al.  Charge-Induced Structural Changes in a Single Molecule Investigated by Atomic Force Microscopy. , 2019, Physical review letters.

[19]  L. Campos,et al.  Resolving the unpaired-electron orbital distribution in a stable organic radical by Kondo resonance mapping. , 2019, Angewandte Chemie.

[20]  W. Hieringer,et al.  Nanoribbons with Non-Alternant Topology from Fusion of Polyazulene: Carbon Allotropes Beyond Graphene. , 2019, Journal of the American Chemical Society.

[21]  J. Chelikowsky,et al.  Discrimination of Bond Order in Organic Molecules Using Noncontact Atomic Force Microscopy. , 2019, Nano letters.

[22]  N. Moll,et al.  Molecular structure elucidation with charge-state control , 2019, Science.

[23]  Colin Daniels,et al.  On-surface Synthesis and Characterization of Acene-based Nanoribbons Incorporating Four-membered Rings. , 2019, Chemistry.

[24]  N. Moll,et al.  Accessing a Charged Intermediate State Involved in the Excitation of Single Molecules. , 2019, Physical review letters.

[25]  P. Jelínek,et al.  Atomically precise bottom-up synthesis of π-extended [5]triangulene , 2019, Science Advances.

[26]  M. Persson Electric potentials at the atomic scale , 2019, Nature Materials.

[27]  L. Gross,et al.  A Single-Molecule Chemical Reaction Studied by High-Resolution Atomic Force Microscopy and Scanning Tunneling Microscopy Induced Light Emission , 2019, ACS nano.

[28]  Juho Kannala,et al.  Automated structure discovery in atomic force microscopy , 2019, Science Advances.

[29]  Fátima García,et al.  Exploring a Route to Cyclic Acenes by On‐Surface Synthesis , 2019, Angewandte Chemie.

[30]  H. Wegner,et al.  Bond-Level Imaging of the 3D Conformation of Adsorbed Organic Molecules Using Atomic Force Microscopy with Simultaneous Tunneling Feedback. , 2019, Physical review letters.

[31]  Rolf Findeisen,et al.  Quantitative imaging of electric surface potentials with single-atom sensitivity , 2019, Nature Materials.

[32]  Reinhard Berger,et al.  On-Surface Synthesis of a Nonplanar Porous Nanographene , 2019, Journal of the American Chemical Society.

[33]  Junfa Zhu,et al.  Confined on-surface organic synthesis: Strategies and mechanisms , 2019, Surface Science Reports.

[34]  P. Zahl,et al.  Guide for Atomic Force Microscopy Image Analysis To Discriminate Heteroatoms in Aromatic Molecules , 2019, Energy & Fuels.

[35]  Biao Yang,et al.  Benzo-Fused Periacenes or Double Helicenes? Different Cyclodehydrogenation Pathways on Surface and in Solution , 2019, Journal of the American Chemical Society.

[36]  F. Giessibl,et al.  In-situ characterization of O-terminated Cu tips for high-resolution atomic force microscopy , 2019, Applied Physics Letters.

[37]  Kornel Ehmann,et al.  Towards atomic and close-to-atomic scale manufacturing , 2019, International Journal of Extreme Manufacturing.

[38]  O. Gordon,et al.  Scanning Probe State Recognition With Multi-Class Neural Network Ensembles , 2019, Review of Scientific Instruments.

[39]  S. Clair,et al.  Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis , 2019, Chemical reviews.

[40]  Mohammad Mehdi Rashidi,et al.  Deep learning-guided surface characterization for autonomous hydrogen lithography , 2019, Mach. Learn. Sci. Technol..

[41]  Sergei V. Kalinin,et al.  Deep neural networks for understanding noisy data applied to physical property extraction in scanning probe microscopy , 2019, npj Computational Materials.

[42]  E. Meyer,et al.  Conformations and cryo-force spectroscopy of spray-deposited single-strand DNA on gold , 2019, Nature Communications.

[43]  Reinhard Berger,et al.  Graphene Nanoribbons Derived from Zigzag Edge-Encased Poly( para-2,9-dibenzo[ bc, kl]coronenylene) Polymer Chains. , 2019, Journal of the American Chemical Society.

[44]  J. Repp,et al.  Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators , 2019, Nature.

[45]  P. Jelínek,et al.  Nitrous oxide as an effective AFM tip functionalization: a comparative study , 2019, Beilstein journal of nanotechnology.

[46]  P. Pou,et al.  Molecular Identification, Bond Order Discrimination, and Apparent Intermolecular Features in Atomic Force Microscopy Studied with a Charge Density Based Method. , 2019, ACS nano.

[47]  F. Giessibl The qPlus sensor, a powerful core for the atomic force microscope. , 2019, The Review of scientific instruments.

[48]  H. Wegner,et al.  Adsorption Structure of Mono- and Diradicals on a Cu(111) Surface: Chemoselective Dehalogenation of 4-Bromo-3″-iodo- p-terphenyl. , 2018, ACS nano.

[49]  Xiaohui Qiu,et al.  High-Yield Formation of Graphdiyne Macrocycles through On-Surface Assembling and Coupling Reaction. , 2018, ACS nano.

[50]  J. Barth,et al.  Exploration of Interfacial Porphine Coupling Schemes and Hybrid Systems by Bond-Resolved Scanning Probe Microscopy. , 2018, Angewandte Chemie.

[51]  Yunlong Zhang Nonalternant Aromaticity and Partial Double Bond in Petroleum Molecules Revealed: Theoretical Understanding of Polycyclic Aromatic Hydrocarbons Obtained by Noncontact Atomic Force Microscopy , 2018, Energy & Fuels.

[52]  L. Gross,et al.  [19]Dendriphene: A 19-Ring Dendritic Nanographene. , 2018, Chemistry.

[53]  E. Minamitani,et al.  CO-tip manipulation using repulsive interactions , 2018, Nanotechnology.

[54]  P. Jelínek,et al.  Bonding Motifs in Metal-Organic Compounds on Surfaces. , 2018, Journal of the American Chemical Society.

[55]  D. Sánchez-Portal,et al.  Building a 22-ring nanographene by combining in-solution and on-surface syntheses. , 2018, Chemical communications.

[56]  H. Mönig Copper-oxide tip functionalization for submolecular atomic force microscopy. , 2018, Chemical communications.

[57]  F. Federici Canova,et al.  Micrometre-long covalent organic fibres by photoinitiated chain-growth radical polymerization on an alkali-halide surface , 2018, Nature Chemistry.

[58]  S. Du,et al.  Symmetry breakdown of 4,4″-diamino-p-terphenyl on a Cu(111) surface by lattice mismatch , 2018, Nature Communications.

[59]  A. Sinitskii,et al.  Phenyl Functionalization of Atomically Precise Graphene Nanoribbons for Engineering Inter-ribbon Interactions and Graphene Nanopores. , 2018, ACS nano.

[60]  E. Meyer,et al.  Diacetylene Linked Anthracene Oligomers Synthesized by One-Shot Homocoupling of Trimethylsilyl on Cu(111). , 2018, ACS nano.

[61]  Xiaohui Qiu,et al.  Self-assembly directed one-step synthesis of [4]radialene on Cu(100) surfaces , 2018, Nature Communications.

[62]  T. Jacob,et al.  Direct Formation of C-C Double-Bonded Structural Motifs by On-Surface Dehalogenative Homocoupling of gem-Dibromomethyl Molecules. , 2018, ACS nano.

[63]  P. Schreiner,et al.  Assigning the absolute configuration of single aliphatic molecules by visual inspection , 2018, Nature Communications.

[64]  G. Meyer,et al.  Direct Visualization of Individual Aromatic Compound Structures in Low Molecular Weight Marine Dissolved Organic Carbon , 2018, Geophysical Research Letters.

[65]  A. Seitsonen,et al.  Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy , 2018, ACS nano.

[66]  Harry L. Anderson,et al.  Polyyne formation via skeletal rearrangement induced by atomic manipulation , 2018, Nature Chemistry.

[67]  D. Zhong,et al.  Thermally Induced Transformation of Nonhexagonal Carbon Rings in Graphene-like Nanoribbons , 2018 .

[68]  M. Persson,et al.  Reorganization energy upon charging a single molecule on an insulator measured by atomic force microscopy , 2018, Nature Nanotechnology.

[69]  Saeed Amirjalayer,et al.  Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips , 2018, Nature Nanotechnology.

[70]  N. Moll,et al.  Atomic Force Microscopy for Molecular Structure Elucidation. , 2018, Angewandte Chemie.

[71]  E. Meyer,et al.  Multiple heteroatom substitution to graphene nanoribbon , 2018, Science Advances.

[72]  Mohammad Rashidi,et al.  Autonomous Scanning Probe Microscopy in Situ Tip Conditioning through Machine Learning. , 2018, ACS nano.

[73]  Biao Yang,et al.  Hierarchical Dehydrogenation Reactions on a Copper Surface. , 2018, Journal of the American Chemical Society.

[74]  A. Floris,et al.  On-surface synthesis on a bulk insulator surface , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[75]  Daniel J. Rizzo,et al.  Topological band engineering of graphene nanoribbons , 2018, Nature.

[76]  M. Garnica,et al.  Exploration of pyrazine-embedded antiaromatic polycyclic hydrocarbons generated by solution and on-surface azomethine ylide homocoupling , 2017, Nature Communications.

[77]  G. Meyer,et al.  Generation and Characterization of a meta-Aryne on Cu and NaCl Surfaces. , 2017, ACS nano.

[78]  Xinyuan Wei,et al.  Imaging the halogen bond in self-assembled halogenbenzenes on silver , 2017, Science.

[79]  S. Goedecker,et al.  Precise engineering of quantum dot array coupling through their barrier widths , 2017, Nature Communications.

[80]  M. Brandbyge,et al.  Mechanochemistry Induced Using Force Exerted by a Functionalized Microscope Tip. , 2017, Angewandte Chemie.

[81]  P. Schreiner,et al.  London Dispersion Directs On-Surface Self-Assembly of [121]Tetramantane Molecules. , 2017, ACS nano.

[82]  J. Repp,et al.  Crystallization of a Two-Dimensional Hydrogen-Bonded Molecular Assembly: Evolution of the Local Structure Resolved by Atomic Force Microscopy. , 2017, Angewandte Chemie.

[83]  Christian Joachim,et al.  Design and Characterization of an Electrically Powered Single Molecule on Gold. , 2017, ACS nano.

[84]  G. Meyer,et al.  Tip-induced passivation of dangling bonds on hydrogenated Si(100)-2 × 1 , 2017 .

[85]  E. Meyer,et al.  Donor-Acceptor Properties of a Single-Molecule Altered by On-Surface Complex Formation. , 2017, ACS nano.

[86]  P. Jelínek High resolution SPM imaging of organic molecules with functionalized tips , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[87]  H. Sakaguchi,et al.  Strain-induced skeletal rearrangement of a polycyclic aromatic hydrocarbon on a copper surface , 2017, Nature Communications.

[88]  E. Meyer,et al.  Competing Annulene and Radialene Structures in a Single Anti-Aromatic Molecule Studied by High-Resolution Atomic Force Microscopy. , 2017, ACS nano.

[89]  O. Mullins,et al.  Heavy Oil Based Mixtures of Different Origins and Treatments Studied by Atomic Force Microscopy , 2017 .

[90]  Lifeng Chi,et al.  Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy , 2017 .

[91]  E. Meyer,et al.  Direct quantitative measurement of the C═O⋅⋅⋅H–C bond by atomic force microscopy , 2017, Science Advances.

[92]  N. Moll,et al.  Synthesis and characterization of triangulene. , 2017, Nature nanotechnology.

[93]  P. Jelínek,et al.  Electronegativity determination of individual surface atoms by atomic force microscopy , 2017, Nature Communications.

[94]  Harald Fuchs,et al.  Frontiers of on-surface synthesis: From principles to applications , 2017 .

[95]  H. Wegner,et al.  Imaging Successive Intermediate States of the On-Surface Ullmann Reaction on Cu(111): Role of the Metal Coordination. , 2017, ACS nano.

[96]  M. Koleini,et al.  Indications of chemical bond contrast in AFM images of a hydrogen-terminated silicon surface , 2017, Nature Communications.

[97]  S. Goedecker,et al.  Hydroxyl-Induced Partial Charge States of Single Porphyrins on Titania Rutile , 2017 .

[98]  C. Pignedoli,et al.  On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons. , 2017, ACS nano.

[99]  J. Barth,et al.  Direct Identification and Determination of Conformational Response in Adsorbed Individual Nonplanar Molecular Species Using Noncontact Atomic Force Microscopy. , 2016, Nano letters.

[100]  M. Persson,et al.  Force-induced tautomerization in a single molecule. , 2016, Nature chemistry.

[101]  E. Meyer,et al.  Thermal control of sequential on-surface transformation of a hydrocarbon molecule on a copper surface , 2016, Nature Communications.

[102]  S. Goedecker,et al.  Organometallic Bonding in an Ullmann-Type On-Surface Chemical Reaction Studied by High-Resolution Atomic Force Microscopy. , 2016, Small.

[103]  P. Jelínek,et al.  Characteristic Contrast in Δfmin Maps of Organic Molecules Using Atomic Force Microscopy. , 2016, ACS nano.

[104]  Á. Rubio,et al.  Imaging single-molecule reaction intermediates stabilized by surface dissipation and entropy. , 2016, Nature chemistry.

[105]  P. Jelínek,et al.  Mapping the electrostatic force field of single molecules from high-resolution scanning probe images , 2016, Nature Communications.

[106]  N. Lorente,et al.  AFM Imaging of Mercaptobenzoic Acid on Au(110): Submolecular Contrast with Metal Tips. , 2016, The journal of physical chemistry letters.

[107]  E. Meyer,et al.  Van der Waals interactions and the limits of isolated atom models at interfaces , 2016, Nature Communications.

[108]  G. Meyer,et al.  Synthesis of a Naphthodiazaborinine and Its Verification by Planarization with Atomic Force Microscopy. , 2016, ACS nano.

[109]  P. Jelínek,et al.  Control of Reactivity and Regioselectivity for On-Surface Dehydrogenative Aryl-Aryl Bond Formation. , 2016, Journal of the American Chemical Society.

[110]  Alex J. Lee,et al.  First-Principles Atomic Force Microscopy Image Simulations with Density Embedding Theory. , 2016, Nano letters.

[111]  S. Louie,et al.  Tuning charge and correlation effects for a single molecule on a graphene device , 2016, Nature Communications.

[112]  P. Jelínek,et al.  Submolecular Resolution Imaging of Molecules by Atomic Force Microscopy: The Influence of the Electrostatic Force. , 2016, Physical review letters.

[113]  N. Moll,et al.  Reversible Bergman cyclization by atomic manipulation. , 2016, Nature chemistry.

[114]  E. Meyer,et al.  Superlubricity of graphene nanoribbons on gold surfaces , 2016, Science.

[115]  N. Moll,et al.  The Electric Field of CO Tips and Its Relevance for Atomic Force Microscopy. , 2016, Nano letters.

[116]  M. Rashid,et al.  Visualizing the orientational dependence of an intermolecular potential , 2016, Nature Communications.

[117]  Pierangelo Metrangolo,et al.  The Halogen Bond , 2016, Chemical reviews.

[118]  H. Fuchs,et al.  Submolecular Imaging by Noncontact Atomic Force Microscopy with an Oxygen Atom Rigidly Connected to a Metallic Probe. , 2016, ACS nano.

[119]  N. Champness,et al.  Physisorption controls the conformation and density of states of an adsorbed porphyrin , 2015 .

[120]  Thomas Dienel,et al.  On-surface Synthesis of Graphene Nanoribbons with Zigzag Edge Topology References and Notes , 2022 .

[121]  J. Chelikowsky,et al.  CO tip functionalization in subatomic resolution atomic force microscopy , 2015 .

[122]  N. Champness,et al.  Measuring the mechanical properties of molecular conformers , 2015, Nature Communications.

[123]  G. Meyer,et al.  Probe-based measurement of lateral single-electron transfer between individual molecules , 2015, Nature Communications.

[124]  E. Meyer,et al.  Atomically controlled substitutional boron-doping of graphene nanoribbons , 2015, Nature Communications.

[125]  E. Altman,et al.  Noncontact Atomic Force Microscopy: An Emerging Tool for Fundamental Catalysis Research. , 2015, Accounts of chemical research.

[126]  P. Jelínek,et al.  Probing Charges on the Atomic Scale by Means of Atomic Force Microscopy. , 2015, Physical review letters.

[127]  A. Pucci,et al.  Low-Temperature Adsorption of Carbon Monoxide on Gold Surfaces: IR Spectroscopy Uncovers Different Adsorption States on Pristine and Rough Au(111) , 2015 .

[128]  F. Giessibl,et al.  Intramolecular Force Contrast and Dynamic Current-Distance Measurements at Room Temperature. , 2015, Physical review letters.

[129]  N. Moll,et al.  On-surface generation and imaging of arynes by atomic force microscopy. , 2015, Nature chemistry.

[130]  S. Jarvis Resolving Intra- and Inter-Molecular Structure with Non-Contact Atomic Force Microscopy , 2015, International journal of molecular sciences.

[131]  Oliver C. Mullins,et al.  Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy. , 2015, Journal of the American Chemical Society.

[132]  S. Kawai,et al.  Resolving Atomic Connectivity in Graphene Nanostructure Junctions. , 2015, Nano letters.

[133]  P. Jelínek,et al.  Chemical structure imaging of a single molecule by atomic force microscopy at room temperature , 2015, Nature Communications.

[134]  M. Ruben,et al.  Characterization of a surface reaction by means of atomic force microscopy. , 2015, Journal of the American Chemical Society.

[135]  J. Neaton,et al.  Single-molecule diodes with high rectification ratios through environmental control. , 2015, Nature nanotechnology.

[136]  Tomasz A Wesolowski,et al.  Frozen-Density Embedding Strategy for Multilevel Simulations of Electronic Structure. , 2015, Chemical reviews.

[137]  H. Ebert,et al.  Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters , 2015, Science.

[138]  A. J. Weymouth,et al.  Force field analysis suggests a lowering of diffusion barriers in atomic manipulation due to presence of STM tip. , 2015, Physical review letters.

[139]  Philipp Leinen,et al.  Scanning Quantum Dot Microscopy. , 2015, Physical review letters.

[140]  O. Custance,et al.  Imaging three-dimensional surface objects with submolecular resolution by atomic force microscopy. , 2015, Nano letters.

[141]  Stefan Goedecker,et al.  Extended halogen bonding between fully fluorinated aromatic molecules. , 2015, ACS nano.

[142]  D. Dietzel,et al.  Tip radius quantification using feature-size mapping of field ion microscopy images , 2014 .

[143]  C. Wagner,et al.  Patterning a hydrogen-bonded molecular monolayer with a hand-controlled scanning probe microscope , 2014, Beilstein journal of nanotechnology.

[144]  L. Kantorovich,et al.  Identifying tips for intramolecular NC-AFM imaging via in situ fingerprinting , 2014, Scientific Reports.

[145]  L. Kantorovich,et al.  Intramolecular bonds resolved on a semiconductor surface , 2014 .

[146]  A. Curioni,et al.  Image distortions of a partially fluorinated hydrocarbon molecule in atomic force microscopy with carbon monoxide terminated tips. , 2014, Nano letters.

[147]  P. Jelínek,et al.  Origin of High-Resolution IETS-STM Images of Organic Molecules with Functionalized Tips. , 2014, Physical review letters.

[148]  M. Persson,et al.  Investigating atomic contrast in atomic force microscopy and Kelvin probe force microscopy on ionic systems using functionalized tips , 2014, 1408.7053.

[149]  A. Gourdon,et al.  Substrate templating guides the photoinduced reaction of C60 on calcite. , 2014, Angewandte Chemie.

[150]  Hongbin Li,et al.  Quantifying thiol–gold interactions towards the efficient strength control , 2014, Nature Communications.

[151]  A. Kühnle,et al.  Decisive influence of substitution positions in molecular self-assembly. , 2014, Physical chemistry chemical physics : PCCP.

[152]  F. Stefan Tautz,et al.  Mechanism of high-resolution STM/AFM imaging with functionalized tips , 2014, 1406.3562.

[153]  G. Meyer,et al.  Local thickness determination of thin insulator films via localized states , 2014 .

[154]  Y. Geng,et al.  Contrast formation in Kelvin probe force microscopy of single π-conjugated molecules. , 2014, Nano letters.

[155]  Chen Xu,et al.  Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe , 2014, Science.

[156]  N. Moll,et al.  Image correction for atomic force microscopy images with functionalized tips , 2014 .

[157]  H. Fuchs,et al.  Long Jumps of an Organic Molecule Induced by Atomic Force Microscopy Manipulation , 2014 .

[158]  A. J. Weymouth,et al.  Quantifying Molecular Stiffness and Interaction with Lateral Force Microscopy , 2014, Science.

[159]  L. Kantorovich,et al.  Mapping the force field of a hydrogen-bonded assembly , 2014, Nature Communications.

[160]  S. Louie,et al.  Local Electronic and Chemical Structure of Oligo-acetylene Derivatives Formed Through Radical Cyclizations at a Surface , 2014, Nano letters.

[161]  A. Gourdon,et al.  Controlled Activation of Substrate Templating in Molecular Self-Assembly by Deprotonation , 2013 .

[162]  M. Ruben,et al.  High‐resolution scanning tunneling and atomic force microscopy of stereochemically resolved dibenzo[a,h]thianthrene molecules , 2013 .

[163]  Wei Ji,et al.  Real-Space Identification of Intermolecular Bonding with Atomic Force Microscopy , 2013, Science.

[164]  F. Giessibl,et al.  Chemical and crystallographic characterization of the tip apex in scanning probe microscopy. , 2013, Physical review letters.

[165]  Milica Todorović,et al.  Understanding scanning tunneling microscopy contrast mechanisms on metal oxides: a case study. , 2013, ACS nano.

[166]  S. Goedecker,et al.  Obtaining detailed structural information about supramolecular systems on surfaces by combining high-resolution force microscopy with ab initio calculations. , 2013, ACS nano.

[167]  A. Tkatchenko,et al.  Adsorption geometry determination of single molecules by atomic force microscopy. , 2013, Physical review letters.

[168]  Angel Rubio,et al.  Direct Imaging of Covalent Bond Structure in Single-Molecule Chemical Reactions , 2013, Science.

[169]  P. Liljeroth,et al.  Suppression of electron–vibron coupling in graphene nanoribbons contacted via a single atom , 2013, Nature Communications.

[170]  I. Swart,et al.  Formation and characterization of a molecule-metal-molecule bridge in real space. , 2013, Journal of the American Chemical Society.

[171]  A. Gourdon,et al.  Sequential and site-specific on-surface synthesis on a bulk insulator. , 2013, ACS nano.

[172]  S. Solares,et al.  Bimodal atomic force microscopy driving the higher eigenmode in frequency-modulation mode: Implementation, advantages, disadvantages and comparison to the open-loop case , 2013, Beilstein journal of nanotechnology.

[173]  H. Hölscher,et al.  Field ion microscopy characterized tips in noncontact atomic force microscopy: Quantification of long-range force interactions , 2013 .

[174]  G. Meyer,et al.  Different tips for high-resolution atomic force microscopy and scanning tunneling microscopy of single molecules , 2013 .

[175]  H. Fuchs,et al.  Forces during the controlled displacement of organic molecules. , 2013, Physical review letters.

[176]  Johan Isaksson,et al.  A combined atomic force microscopy and computational approach for the structural elucidation of breitfussin A and B: highly modified halogenated dipeptides from Thuiaria breitfussi. , 2012, Angewandte Chemie.

[177]  P. Liljeroth,et al.  Quantitative atomic resolution force imaging on epitaxial graphene with reactive and nonreactive AFM probes. , 2012, ACS nano.

[178]  A. Kühnle,et al.  Substrate templating upon self-assembly of hydrogen-bonded molecular networks on an insulating surface. , 2012, Small.

[179]  Leo Gross,et al.  Bond-Order Discrimination by Atomic Force Microscopy , 2012, Science.

[180]  E. Altman,et al.  Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction , 2012, Beilstein journal of nanotechnology.

[181]  A. Kühnle,et al.  Molecular self-assembly on an insulating surface: interplay between substrate templating and intermolecular interactions , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[182]  A. Ferretti,et al.  Electronic Structure of Atomically Precise Graphene Nanoribbons , 2019, Handbook of Materials Modeling.

[183]  L. Kantorovich,et al.  Precise orientation of a single C60 molecule on the tip of a scanning probe microscope. , 2012, Physical review letters.

[184]  L. Kantorovich,et al.  Identifying passivated dynamic force microscopy tips on H:Si(100) , 2012 .

[185]  Leo Gross,et al.  Imaging the charge distribution within a single molecule. , 2012, Nature nanotechnology.

[186]  Ricardo Garcia,et al.  The emergence of multifrequency force microscopy. , 2012, Nature nanotechnology.

[187]  S. Kawai,et al.  High-resolution imaging of C60 molecules using tuning-fork-based non-contact atomic force microscopy , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[188]  Jascha Repp,et al.  Atomic force microscopy reveals bistable configurations of dibenzo[a,h]thianthrene and their interconversion pathway. , 2012, Physical review letters.

[189]  C. Wagner,et al.  Single molecule and single atom sensors for atomic resolution imaging of chemically complex surfaces. , 2011, Journal of the American Chemical Society.

[190]  A. Gourdon,et al.  On-surface covalent linking of organic building blocks on a bulk insulator. , 2011, ACS nano.

[191]  Alessandro Curioni,et al.  High-resolution molecular orbital imaging using a p-wave STM tip. , 2011, Physical review letters.

[192]  G. Meyer,et al.  Measuring the short-range force field above a single molecule with atomic resolution , 2011 .

[193]  Michael Reichling,et al.  Flexible drift-compensation system for precise 3D force mapping in severe drift environments. , 2011, The Review of scientific instruments.

[194]  Yukio Hasegawa,et al.  Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators , 2011, 1104.2987.

[195]  Leo Gross,et al.  Recent advances in submolecular resolution with scanning probe microscopy. , 2011, Nature chemistry.

[196]  P. Liljeroth,et al.  Quantitative atomic force microscopy with carbon monoxide terminated tips. , 2011, Physical review letters.

[197]  M. Persson,et al.  Reversible bond formation in a gold-atom-organic-molecule complex as a molecular switch. , 2010, Physical review letters.

[198]  A. Curioni,et al.  The mechanisms underlying the enhanced resolution of atomic force microscopy with functionalized tips , 2010 .

[199]  G. Cuniberti,et al.  Electrical transport through a mechanically gated molecular wire , 2010, 1011.1400.

[200]  N. Moll,et al.  Organic structure determination using atomic-resolution scanning probe microscopy. , 2010, Nature chemistry.

[201]  F Stefan Tautz,et al.  Direct imaging of intermolecular bonds in scanning tunneling microscopy. , 2010, Journal of the American Chemical Society.

[202]  M. Rohlfing,et al.  Imaging Pauli repulsion in scanning tunneling microscopy. , 2010, Physical review letters.

[203]  A. Kühnle,et al.  Vertical and lateral drift corrections of scanning probe microscopy images , 2010 .

[204]  Seizo Morita,et al.  Atomic force microscopy as a tool for atom manipulation. , 2009, Nature nanotechnology.

[205]  Peter Liljeroth,et al.  Amplifying the Pacific Climate System Response to a Small 11-Year Solar Cycle Forcing , 2009, Science.

[206]  E. Altman,et al.  Data acquisition and analysis procedures for high-resolution atomic force microscopy in three dimensions , 2009, Nanotechnology.

[207]  E. Meyer,et al.  Novel Probes for Molecular Electronics , 2009, Science.

[208]  Peter Liljeroth,et al.  Measuring the Charge State of an Adatom with Noncontact Atomic Force Microscopy , 2009, Science.

[209]  Ricardo Garcia,et al.  High-resolution noncontact atomic force microscopy , 2009, Nanotechnology.

[210]  E. Altman,et al.  Three-dimensional imaging of short-range chemical forces with picometre resolution. , 2009, Nature nanotechnology.

[211]  A. Schirmeisen,et al.  Atomic-scale force-vector fields. , 2008, Physical review letters.

[212]  F. Diederich,et al.  Nanoscale engineering of molecular porphyrin wires on insulating surfaces. , 2008, Small.

[213]  S. Morita,et al.  Vertical and lateral force mapping on the Si ( 111 ) − ( 7 × 7 ) surface by dynamic force microscopy , 2008 .

[214]  Ruslan Temirov,et al.  A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy , 2008 .

[215]  Franz J. Giessibl,et al.  The Force Needed to Move an Atom on a Surface , 2008, Science.

[216]  Peter Liljeroth,et al.  Current-Induced Hydrogen Tautomerization and Conductance Switching of Naphthalocyanine Molecules , 2007, Science.

[217]  Masayuki Abe,et al.  Drift-compensated data acquisition performed at room temperature with frequency modulation atomic force microscopy , 2007 .

[218]  G. Doyen,et al.  Reaction threshold and decoherence: current induced desorption of CO on Cu(111) in STM , 2007 .

[219]  Masayuki Abe,et al.  Chemical identification of individual surface atoms by atomic force microscopy , 2007, Nature.

[220]  R. Temirov,et al.  Kondo effect by controlled cleavage of a single-molecule contact , 2006, Nanotechnology.

[221]  Masayuki Abe,et al.  Room-temperature reproducible spatial force spectroscopy using atom-tracking technique , 2005 .

[222]  K. Braun,et al.  Single-Atom Extraction by Scanning Tunneling Microscope Tip Crash and Nanoscale Surface Engineering , 2004, cond-mat/0409092.

[223]  H. Güntherodt,et al.  Sublattice identification in scanning force microscopy on alkali halide surfaces. , 2004, Physical review letters.

[224]  John E. Sader,et al.  Accurate formulas for interaction force and energy in frequency modulation force spectroscopy , 2004 .

[225]  Jochen Mannhart,et al.  Stability considerations and implementation of cantilevers allowing dynamic force microscopy with optimal resolution: the qPlus sensor , 2004 .

[226]  H. Hölscher,et al.  Three‐Dimensional Force Field Spectroscopy , 2003 .

[227]  Franz J. Giessibl,et al.  Advances in atomic force microscopy , 2003, cond-mat/0305119.

[228]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[229]  H. Güntherodt,et al.  Quantitative Measurement of Short-Range Chemical Bonding Forces , 2001, Science.

[230]  Meyer,et al.  Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering , 2000, Physical review letters.

[231]  Sébastien Gauthier,et al.  Atomic and molecular manipulations of individual adsorbates by STM , 2000 .

[232]  Bielefeldt,et al.  Subatomic Features on the Silicon (111)-(7x7) Surface Observed by Atomic Force Microscopy. , 2000, Science.

[233]  H. Hölscher,et al.  Quantitative analysis of dynamic-force-spectroscopy data on graphite(0001) in the contact and noncontact regimes , 2000 .

[234]  U. Dürig,et al.  Extracting interaction forces and complementary observables in dynamic probe microscopy , 2000 .

[235]  K. Rieder,et al.  The evolution of CO adsorption on Cu(111) as studied with bare and CO-functionalized scanning tunneling tips , 1999 .

[236]  J. Mannhart,et al.  Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy , 1999 .

[237]  Franz J. Giessibl,et al.  HIGH-SPEED FORCE SENSOR FOR FORCE MICROSCOPY AND PROFILOMETRY UTILIZING A QUARTZ TUNING FORK , 1998 .

[238]  K. Rieder,et al.  On the diffusion of `hot' adsorbates: a non-monotonic distribution of single particle diffusion lengths for CO/Cu(111) , 1998 .

[239]  G. Ertl,et al.  Dynamics of Electron-Induced Manipulation of Individual CO Molecules on Cu(111) , 1998 .

[240]  Franz J. Giessibl,et al.  Forces and frequency shifts in atomic-resolution dynamic-force microscopy , 1997 .

[241]  J. Gimzewski,et al.  Low-temperature ultra-high-vacuum scanning tunneling microscope , 1992 .

[242]  R. Feynman There’s plenty of room at the bottom , 1992, Journal of Microelectromechanical Systems.

[243]  H. K. Wickramasinghe,et al.  Kelvin probe force microscopy , 1991 .

[244]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[245]  R. Colton,et al.  Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope , 1989 .

[246]  R. Wilson,et al.  Scanning tunneling microscopy observations of benzene molecules on the Rh(111)-(3 x 3) (C6H6+2CO) surface. , 1988, Physical review letters.

[247]  B. Viswanathan,et al.  An overview on the electronic and vibrational properties of adsorbed CO , 1985 .

[248]  C. Gerber,et al.  Surface Studies by Scanning Tunneling Microscopy , 1982 .

[249]  G. Blyholder,et al.  Molecular Orbital View of Chemisorbed Carbon Monoxide , 1964 .

[250]  S. Kawai Revealing mechanical and structural properties of molecules on surface by high-resolution atomic force microscopy , 2017 .

[251]  G. Doyen,et al.  Theory of tip‐dependent imaging of adsorbates in the STM: CO on Cu(111) , 2006 .

[252]  K. Braun,et al.  Force induced and electron stimulated STM manipulations: routes to artificial nanostructures as well as to molecular contacts, engines and switches , 2005 .

[253]  G. Dietler,et al.  Force-distance curves by atomic force microscopy , 1999 .

[254]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.