Reasoning About Periodicity on Infinite Words

Characterization of temporal properties is the original purpose of inventing of temporal logics. In this paper, we show that the property like “some event holds periodically” is not omega-regular. Such property is called “periodicity”, which plays an important role in task scheduling and system design. To give a characterization of periodicity, we present the logic QPLTL, which is an extension of LTL via adding quantified step variables. Based on the decomposition theorem, we show that the satisfiability problem of QPLTL is PSPACE-complete.

[1]  Wolfgang Thomas,et al.  Star-Free Regular Sets of omega-Sequences , 1979, Inf. Control..

[2]  César Sánchez,et al.  Regular Linear Temporal Logic , 2007, ICTAC.

[3]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[4]  Alonzo Church,et al.  A note on the Entscheidungsproblem , 1936, Journal of Symbolic Logic.

[5]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[6]  Nicole Schweikardt On the Expressive Power of Monadic Least Fixed Point Logic , 2004, ICALP.

[7]  Alonzo Church,et al.  Correction to A note on the Entscheidungsproblem , 1936, Journal of Symbolic Logic.

[8]  Keijo Heljanko,et al.  Testing LTL formula translation into Büchi automata , 2002, International Journal on Software Tools for Technology Transfer.

[9]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.

[10]  Pierre Wolper,et al.  Reasoning About Infinite Computations , 1994, Inf. Comput..

[11]  Bowen Alpern,et al.  Recognizing safety and liveness , 2005, Distributed Computing.

[12]  Roberto Sebastiani,et al.  "More Deterministic" vs. "Smaller" Büchi Automata for Efficient LTL Model Checking , 2003, CHARME.

[13]  Paul Gastin,et al.  First-order definable languages , 2008, Logic and Automata.

[14]  Howard Barringer,et al.  Temporal Logic with Fixed Points , 1987, Temporal Logic in Specification.

[15]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[16]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[17]  Bowen Alpern,et al.  Defining Liveness , 1984, Inf. Process. Lett..

[18]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[19]  Pierre Wolper Temporal Logic Can Be More Expressive , 1983, Inf. Control..