Reasoning About Periodicity on Infinite Words
暂无分享,去创建一个
Fu Song | Wanwei Liu | Ge Zhou
[1] Wolfgang Thomas,et al. Star-Free Regular Sets of omega-Sequences , 1979, Inf. Control..
[2] César Sánchez,et al. Regular Linear Temporal Logic , 2007, ICTAC.
[3] J. R. Büchi. On a Decision Method in Restricted Second Order Arithmetic , 1990 .
[4] Alonzo Church,et al. A note on the Entscheidungsproblem , 1936, Journal of Symbolic Logic.
[5] Fred Kröger,et al. Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.
[6] Nicole Schweikardt. On the Expressive Power of Monadic Least Fixed Point Logic , 2004, ICALP.
[7] Alonzo Church,et al. Correction to A note on the Entscheidungsproblem , 1936, Journal of Symbolic Logic.
[8] Keijo Heljanko,et al. Testing LTL formula translation into Büchi automata , 2002, International Journal on Software Tools for Technology Transfer.
[9] Edmund M. Clarke,et al. Model Checking , 1999, Handbook of Automated Reasoning.
[10] Pierre Wolper,et al. Reasoning About Infinite Computations , 1994, Inf. Comput..
[11] Bowen Alpern,et al. Recognizing safety and liveness , 2005, Distributed Computing.
[12] Roberto Sebastiani,et al. "More Deterministic" vs. "Smaller" Büchi Automata for Efficient LTL Model Checking , 2003, CHARME.
[13] Paul Gastin,et al. First-order definable languages , 2008, Logic and Automata.
[14] Howard Barringer,et al. Temporal Logic with Fixed Points , 1987, Temporal Logic in Specification.
[15] M. Rabin. Decidability of second-order theories and automata on infinite trees , 1968 .
[16] Robert McNaughton,et al. Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..
[17] Bowen Alpern,et al. Defining Liveness , 1984, Inf. Process. Lett..
[18] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .
[19] Pierre Wolper. Temporal Logic Can Be More Expressive , 1983, Inf. Control..