Dickinsonia: mobile and adhered

Abstract The classical genus of Ediacaran macroorganisms, Dickinsonia, was part of an extensive benthic marine community inhabiting the fields of microbial mats. The remains of Dickinsonia are commonly preserved in the position of adhesion to the habitat substrate. However, these were mobile organisms. In addition to the already known feeding traces of Dickinsonia, structures described as traces of motor activity are reported. Long parallel furrows, extending from the posterior end of the body imprint, are interpreted as imprints of ridges left by an organism moving along the surface of the substrate. Groups of differently shaped grooves laying in the depression that enhalo the Dickinsonia body imprints or accompany their individual areas are interpreted as imprints of ridges and cords of mucous material. They are considered to represent structures of self-determined stretching and lift-off of the body margins from the substrate. The rings and arcs of silt- and sand-sized mineral particles bordering the body imprints are composed of material that was supposedly brushed off from the surface of the microbial mat by Dickinsonia. They are considered traces of the adhesion of these organisms to the substrate. Accumulations of multidirectional pulling and tear-off structures, lacking the body imprint but accompanied by the joint plane passing into the overlying sediment and cutting through the bedding, are interpreted as escape traces. The dual modality of the behaviour (attachment and mobility) could indicate the adaptability of Dickinsonia to life in extremely shallow-water environments.

[1]  A. Ivantsov,et al.  Intravital damage to the body of Dickinsonia (Metazoa of the late Ediacaran) , 2020, Journal of Paleontology.

[2]  M. Droser,et al.  Biostratinomy of the Ediacara Member (Rawnsley Quartzite, South Australia): implications for depositional environments, ecology and biology of Ediacara organisms , 2020, Interface Focus.

[3]  G. Retallack,et al.  Arumberia and other Ediacaran–Cambrian fossils of central Australia , 2020, Historical Biology.

[4]  A. Liu,et al.  The influence of environmental setting on the community ecology of Ediacaran organisms , 2019, bioRxiv.

[5]  P. Vickers-Rich,et al.  Conical Thecae of Precambrian Macroorganisms , 2019, Paleontological Journal.

[6]  A. Ivantsov,et al.  Morphology of integuments of the Precambrian animals, Proarticulata , 2019 .

[7]  N. I. Bobkov,et al.  The occurrence of Dickinsonia in non-marine facies , 2019, Estudios Geológicos.

[8]  D. Kisailus,et al.  Stretched, mangled, and torn: Responses of the Ediacaran fossil Dickinsonia to variable forces , 2019, Geology.

[9]  A. Ivantsov,et al.  Traces of Locomotion of Ediacaran Macroorganisms , 2019, Geosciences.

[10]  A. Ivantsov,et al.  Cephalonega, A New Generic Name, and the System of Vendian Proarticulata , 2019, Paleontological Journal.

[11]  M. Droser,et al.  Slime travelers: Early evidence of animal mobility and feeding in an organic mat world , 2019, Geobiology.

[12]  J. Brocks,et al.  Simple sediment rheology explains the Ediacara biota preservation , 2019, Nature Ecology & Evolution.

[13]  A. Ivantsov,et al.  Morphology of integuments of the Precambrian animals , 2019 .

[14]  J. Hope,et al.  Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals , 2018, Science.

[15]  P. Donoghue,et al.  Ediacaran developmental biology , 2017, Biological reviews of the Cambridge Philosophical Society.

[16]  M. Droser,et al.  The Rise of Animals in a Changing Environment: Global Ecological Innovation in the Late Ediacaran , 2017 .

[17]  A. Liu,et al.  Quantitative study of developmental biology confirms Dickinsonia as a metazoan , 2017, Proceedings of the Royal Society B: Biological Sciences.

[18]  Å. Austin,et al.  A cross-scale trophic cascade from large predatory fish to algae in coastal ecosystems , 2017, Proceedings of the Royal Society B: Biological Sciences.

[19]  M. Droser,et al.  Highly regulated growth and development of the Ediacara macrofossil Dickinsonia costata , 2017, PloS one.

[20]  M. Droser,et al.  MICROBIAL MAT SANDWICHES AND OTHER ANACTUALISTIC SEDIMENTARY FEATURES OF THE EDIACARA MEMBER (RAWNSLEY QUARTZITE, SOUTH AUSTRALIA): IMPLICATIONS FOR INTERPRETATION OF THE EDIACARAN SEDIMENTARY RECORD , 2017, Palaios.

[21]  D. Jacobs,et al.  Ancestral state reconstruction of ontogeny supports a bilaterian affinity for Dickinsonia , 2015, Evolution & development.

[22]  M. Droser,et al.  Dickinsonia liftoff: Evidence of current derived morphologies , 2015 .

[23]  M. Droser,et al.  The advent of animals: The view from the Ediacaran , 2015, Proceedings of the National Academy of Sciences.

[24]  M. Droser,et al.  Taphonomy and morphology of the Ediacara form genus Aspidella , 2015 .

[25]  M. Zakrevskaya Paleoecological reconstruction of the Ediacaran benthic macroscopic communities of the White Sea (Russia) , 2014 .

[26]  A. Ivantsov,et al.  Trace fossils of precambrian metazoans “Vendobionta” and “Mollusks” , 2013, Stratigraphy and Geological Correlation.

[27]  D. McIlroy,et al.  Discussion: “Were the Ediacaran siliciclastics of South Australia coastal or deep marine?” by Retallack et al., Sedimentology, 59, 1208–1236 , 2013 .

[28]  G. Retallack Ediacaran life on land , 2012, Nature.

[29]  S. Xiao,et al.  Palaeontology: Fossils come in to land , 2013, Nature.

[30]  G. Retallack Were Ediacaran siliciclastics of South Australia coastal or deep marine? , 2012 .

[31]  G. Retallack CRITERIA FOR DISTINGUISHING MICROBIAL MATS AND EARTHS , 2012 .

[32]  A. Ivantsov,et al.  Feeding traces of proarticulata—the Vendian metazoa , 2011 .

[33]  J. Schiffbauer,et al.  Microbial biofilms and the preservation of the Ediacara biota , 2011 .

[34]  A. Ivantsov Paleontological evidence for the supposed precambrian occurrence of mollusks , 2010 .

[35]  J. Vinther,et al.  A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes , 2010, Evolution & development.

[36]  A. Ivantsov New reconstruction of Kimberella, problematic Vendian metazoan , 2009 .

[37]  S. Rozhnov Development of the trophic structure of Vendian and Early Paleozoic marine communities , 2009 .

[38]  M. Droser,et al.  Textured organic surfaces associated with the Ediacara biota in South Australia , 2009 .

[39]  M. Brasier,et al.  Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: Implications for Ediacaran taphonomic models , 2009 .

[40]  J. Antcliffe,et al.  Dickinsonia from Ediacara: A new look at morphology and body construction , 2008 .

[41]  G. Retallack Growth, decay and burial compaction of Dickinsonia, an iconic Ediacaran fossil , 2007 .

[42]  T. Baumiller,et al.  A biomechanical approach to Ediacaran hypotheses: how to weed the Garden of Ediacara , 2007 .

[43]  A. Seilacher The nature of vendobionts , 2007 .

[44]  S. Jensen,et al.  Assemblage palaeoecology of the Ediacara biota: The unabridged edition? , 2006 .

[45]  D. Bottjer,et al.  Evolutionary Paleoecology of Ediacaran Benthic Marine Animals , 2006 .

[46]  G. Narbonne THE EDIACARA BIOTA: Neoproterozoic Origin of Animals and Their Ecosystems , 2005 .

[47]  D. Grazhdankin Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution , 2004, Paleobiology.

[48]  A. Seilacher,et al.  Ediacaran biota: The dawn of animal life in the shadow of giant protists , 2003 .

[49]  D. Grazhdankin Structure and Depositional Environment of the Vendian Complex in the Southeastern White Sea Area , 2003 .

[50]  J. Dzik,et al.  Internal anatomy of a new Precambrian dickinsoniid dipleurozoan from northern Russia , 2002 .

[51]  M. Fedonkin Andiva ivantsovi gen. et sp. n. and related carapace‐bearing Ediacaran fossils from the Vendian of the Winter Coast, White Sea, Russia , 2002 .

[52]  A. Ivantsov,et al.  Giant traces of vendian animals , 2002 .

[53]  J. Reitner,et al.  Evidence of organic structures in Ediacara-type fossils and associated microbial mats , 2001 .

[54]  B. Cribb,et al.  Adhesive secretions in the Platyhelminthes. , 2001, Advances in parasitology.

[55]  J. Dzik The Origin of the Mineral Skeleton in Chordates , 2000 .

[56]  J. Gehling Microbial mats in terminal Proterozoic siliciclastics; Ediacaran death masks , 1999 .

[57]  A. Seilacher Biomat-related lifestyles in the Precambrian , 1999 .

[58]  M. Davies,et al.  TENACITY OF ATTACHMENT IN TWO SPECIES OF LITTORINID, LITTORINA LITTOREA (L.) AND LITTORINA OBTUSATA (L.) , 1997 .

[59]  Benjamin M. Waggoner Ediacaran lichens: a critique , 1995, Paleobiology.

[60]  G. Retallack Were the Ediacaran fossils lichens? , 1994, Paleobiology.

[61]  A. Zhuravlev Were Ediacaran Vendobionta multicellulars? , 1993, Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen.

[62]  Andrew M. Smith Alternation between attachment mechanisms by limpets in the field , 1992 .

[63]  A. Seilacher Vendobionta and Psammocorallia: lost constructions of Precambrian evolution , 1992, Journal of the Geological Society.

[64]  R. Jenkins Functional and Ecological Aspects of Ediacaran Assemblages , 1992 .

[65]  Andrew M. Smith THE ROLE OF SUCTION IN THE ADHESION OF LIMPETS , 1991 .

[66]  B. Sokolov,et al.  Systematic Description of Vendian Metazoa , 1990 .

[67]  A. Seilacher Vendozoa: Organismic construction in the Proterozoic biosphere , 1989 .

[68]  B. Runnegar Oxygen requirements, biology and phylogenetic significance of the late Precambrian worm Dickinsonia, and the evolution of the burrowing habit , 1982 .

[69]  B. M. Keller,et al.  New organic fossil finds in the Precambrian Valday series along the Syuz'ma River , 1977 .

[70]  M. Wade Dickinsonia: polychaete worms from the late Precambrian Ediacara fauna, South Australia , 1972 .

[71]  M. Wade PRESERVATION OF SOFT‐BODIED ANIMALS IN PRECAMBRIAN SANDSTONES AT EDIACARA, SOUTH AUSTRALIA , 1968 .

[72]  J. Fiasson H. Termier et G. Termier. — Évolution et Biocinèse. Les Invertébrés dans l'histoire du monde vivant. , 1968 .

[73]  M. Glaessner,et al.  The Late Precambrian fossils from Ediacara, South Australia , 1966 .

[74]  M. Glaessner The oldest fossil faunas of South Australia , 1959 .

[75]  C. Reg Early Cambrian jellyfishes of Ediacara, South Australia and Mount John, Kimberley District, Western Australia , 1949 .