Dissipative observers for coupled diffusion-convection-reaction systems

The dissipativity-based observer design approach is extended to a class of coupled systems of 1-D semi-linear parabolic partial differential equations (PDEs) of diffusion–convection–reaction type with in-domain point measurements. This class of systems covers important application examples like tubular or catalytic reactors. By combining a dissipativity (sector) condition for the nonlinearity with a modal measurement injection for the linear differential operator sufficient conditions for the exponential convergence of the observer are derived in the form of a linear matrix inequality (LMI). The performance of the proposed approach is illustrated for an exothermic tubular reactor model.

[1]  R. Curtain Finite-dimensional compensator design for parabolic distributed systems with point sensors and boundary input , 1982 .

[2]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[3]  Jaime A. Moreno Approximate observer error linearization by dissipativity methods , 2005 .

[4]  M. Krstić,et al.  Boundary Control of PDEs , 2008 .

[5]  J. Moreno,et al.  Dissipativity-based observer design for a class of coupled 1-D semi-linear parabolic PDE systems , 2016 .

[6]  Y. Orlov Discontinuous Systems: Lyapunov Analysis and Robust Synthesis under Uncertainty Conditions , 2008 .

[7]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[8]  Ruth F. Curtain,et al.  ADAPTIVE COMPENSATORS FOR PERTURBED POSITIVE REAL INFINITE-DIMENSIONAL SYSTEMS , 2003 .

[9]  G. Hagen,et al.  Absolute stability via boundary control of a semilinear parabolic PDE , 2006, IEEE Transactions on Automatic Control.

[10]  Luciano Pandolfi,et al.  Dissipativity and the Lur'e Problem for Parabolic Boundary Control Systems , 1998 .

[11]  Thomas Meurer Control of Higher–Dimensional PDEs , 2013 .

[12]  P. Daoutidis,et al.  Finite-dimensional control of parabolic PDE systems using approximate inertial manifolds , 1997 .

[13]  Denis Dochain,et al.  Dynamical analysis of distributed parameter tubular reactors , 2000, Autom..

[14]  Alessandro Pisano,et al.  Anticollocated backstepping observer design for a class of coupled reaction-diffusion PDEs , 2015 .

[15]  Christophe Prieur,et al.  Boundary observers for linear and quasi-linear hyperbolic systems with application to flow control , 2013, Autom..

[16]  P. Christofides,et al.  Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes , 2002 .

[17]  Thomas Meurer,et al.  On the Extended Luenberger-Type Observer for Semilinear Distributed-Parameter Systems , 2013, IEEE Transactions on Automatic Control.

[18]  B. Brogliato,et al.  Dissipative Systems Analysis and Control , 2000 .

[19]  J. Willems Dissipative dynamical systems Part II: Linear systems with quadratic supply rates , 1972 .

[20]  N. Amundson,et al.  Some observations on uniqueness and multiplicity of steady states in non‐adiabatic chemically reacting systems , 1973 .

[21]  P. Moylan,et al.  Dissipative Dynamical Systems: Basic Input-Output and State Properties , 1980 .

[22]  Gregory Hagen,et al.  Spillover Stabilization in Finite-Dimensional Control and Observer Design for Dissipative Evolution Equations , 2003, SIAM J. Control. Optim..

[23]  Stevan Dubljevic,et al.  Linear matrix inequalities (LMIs) observer and controller design synthesis for parabolic PDE , 2014, Eur. J. Control.

[24]  Alberto Isidori,et al.  Nonlinear Control Systems II , 1999 .

[25]  Emilia Fridman,et al.  Matrix inequality‐based observer design for a class of distributed transport‐reaction systems , 2014 .

[26]  Andreas Kugi,et al.  Backstepping observers for linear PDEs on higher-dimensional spatial domains , 2015, Autom..