Unique human immune signature of Ebola virus disease in Guinea
暂无分享,去创建一个
Lauren A. Cowley | M. Carrington | P. Formenty | M. Addo | C. Agrati | S. Günther | Z. Kis | E. Cimini | C. Castilletti | A. di Caro | A. Lohse | E. Herker | T. Strecker | C. Muñoz-Fontela | L. Franco | F. Carletti | B. Kreuels | M. Carroll | R. Wölfel | J. Boettcher | Gordian Schudt | T. Avšič-Županc | M. Korva | A. Sachse | B. Diallo | C. Logue | J. Portmann | Martin Gabriel | T. Jacobs | Isabel García-Dorival | A. Kurth | D. Wichmann | N. Magassouba | S. Mély | Elisa Pallasch | J. Hinzmann | L. Oestereich | K. Stoecker | L. Koivogui | Hilde de Clerck | Anne Bocquin | M. van Herp | E. Fleischmann | S. Duraffour | Eeva Kuisma | E. Severi | J. A. Bore | N. Ouédraogo | B. Afrough | A. Bah | B. Becker-Ziaja | Mar Cabeza-Cabrerizo | Tobias Holm | M. Mertens | J. Michel | D. Ngabo | K. Nitzsche | Johanna Repits | I. Vitoriano | E. Zekeng | D. Wozniak | S. Schmiedel | P. Drury | S. Meschi | S. Jonckheere | Edmund N. C. Newman | Svenja Wolff | A. Sprecher | R. Kerber | Peter Molkenthin | B. Kretschmer | P. Anda | A. Thorenz | Paula Ruibal | Anja Lüdtke | Lisa J. Ottowell | M. Lago | Carolina Nanclares | F. R. Koundouno | Alexandra Fizet | Osvaldo Miranda | C. M. Castro | A. Negredo | R. Weller | D. Viola | Anne Kelterbaum | G. Xiaojiang | L. Cowley | J. A. Boré | Xiaojiang Gao | David M Wozniak | Lisa Oestereich | Romy Kerber
[1] K. Lokuge,et al. Ebola viral load at diagnosis associates with patient outcome and outbreak evolution. , 2015, Journal of Clinical Investigation.
[2] G. Ippolito,et al. Blood kinetics of Ebola virus in survivors and nonsurvivors. , 2015, The Journal of clinical investigation.
[3] C. Basler,et al. Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus , 2015, Nature Reviews Microbiology.
[4] S. Günther,et al. Delayed Disease Progression in Cynomolgus Macaques Infected with Ebola Virus Makona Strain , 2015, Emerging infectious diseases.
[5] T. Vogl,et al. Severe Ebola virus disease with vascular leakage and multiorgan failure: treatment of a patient in intensive care , 2015, The Lancet.
[6] Jay B. Varkey,et al. Human Ebola virus infection results in substantial immune activation , 2015, Proceedings of the National Academy of Sciences.
[7] T. Renné,et al. A case of severe Ebola virus infection complicated by gram-negative septicemia. , 2014, The New England journal of medicine.
[8] Rachel S. G. Sealfon,et al. Clinical illness and outcomes in patients with Ebola in Sierra Leone. , 2014, The New England journal of medicine.
[9] S. H. van der Burg,et al. Anti–CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response , 2014, Science Translational Medicine.
[10] Timothy D. Flietstra,et al. Ebola hemorrhagic Fever: novel biomarker correlates of clinical outcome. , 2014, The Journal of infectious diseases.
[11] T. Okazaki,et al. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application , 2013, Nature Immunology.
[12] E. Yang,et al. Transcriptional insights into the CD8+ T cell response to infection and memory T cell formation , 2013, Nature Immunology.
[13] F. Sánchez‐Madrid,et al. Immunoregulatory molecules are master regulators of inflammation during the immune response , 2012, FEBS letters.
[14] J. Allison,et al. Cutting Edge: CTLA-4 on Effector T Cells Inhibits In Trans , 2012, The Journal of Immunology.
[15] L. Rénia,et al. The CTLA-4 and PD-1/PD-L1 Inhibitory Pathways Independently Regulate Host Resistance to Plasmodium-induced Acute Immune Pathology , 2012, PLoS pathogens.
[16] L. Walker,et al. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses , 2011, Nature Reviews Immunology.
[17] H. Ljunggren,et al. Longitudinal Analysis of the Human T Cell Response during Acute Hantavirus Infection , 2011, Journal of Virology.
[18] E John Wherry,et al. T cell exhaustion , 2011 .
[19] P. Bousso,et al. Faculty Opinions recommendation of Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. , 2011 .
[20] G. Anderson,et al. Trans-Endocytosis of CD80 and CD86: A Molecular Basis for the Cell-Extrinsic Function of CTLA-4 , 2011, Science.
[21] A. Theofilopoulos,et al. Impaired negative regulation of homeostatically proliferating T cells. , 2009, Blood.
[22] J. Altman,et al. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. , 2008, Immunity.
[23] P. Rollin,et al. Cytokine and chemokine expression in humans infected with Sudan Ebola virus. , 2007, The Journal of infectious diseases.
[24] E. Rosenberg,et al. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction , 2007, Nature Immunology.
[25] M. Slifka,et al. Pivotal Advance: CTLA‐4+ T cells exhibit normal antiviral functions during acute viral infection , 2007, Journal of leukocyte biology.
[26] K. Sundar,et al. Computational prediction and identification of HLA-A2.1-specific Ebola virus CTL epitopes. , 2007, Virology.
[27] T. Ichiyama,et al. Expression of CTLA‐4 (CD152) in peripheral blood T cells of children with influenza virus infection including encephalopathy in comparison with respiratory syncytial virus infection , 2004, Clinical and experimental immunology.
[28] G. Simmons,et al. Identification of murine T-cell epitopes in Ebola virus nucleoprotein. , 2004, Virology.
[29] J. Bodmer,et al. HLA class I in three West African ethnic groups: genetic distances from sub-Saharan and Caucasoid populations. , 2001, Tissue antigens.
[30] P. Debré,et al. Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients , 1999, Nature Medicine.
[31] P. Linsley,et al. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. , 1992, Science.