Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels

The evolution of the cross section of a salt-marsh channel is explored using a numerical model. Deposition on the marsh platform and erosion and deposition in the channel affect the tidal prism flowing through the cross section, such that the model captures the evolution of the stagee discharge relationship as the channel and marsh platform evolve. The model also captures the growth of salt-marsh vegetation on the marsh platform, and how this vegetation affects flow resistance and the rate of sedimentation. The model is utilized to study the influence of hydroperiod and vegetation encroachment on channel cross section. Numerical results show that a reduction in hydroperiod due to the emergence of the marsh platform causes an infilling of the channel. Vegetation encroachment on the marsh surface produces an increase in flow resistance and accretion due to organic and mineral sedimentation, with important consequences for the shape of the channel cross section. Finally, modeling results indicate that in microtidal marshes with vegetation dominated by Spartina alterniflora, the width-to-depth ratio of the channels decreases when the tidal flats evolve in salt marshes, whereas the cross-sectional area remains proportional to the tidal peak discharge throughout channel evolution.

[1]  S. Ustin,et al.  The influence of tidal channels on the distribution of salt marsh plant species in Petaluma Marsh, CA, USA , 2004, Plant Ecology.

[2]  J. R. Allen A continuity-based sedimentological model for temperate-zone tidal salt marshes , 1994, Journal of the Geological Society.

[3]  Patrick Meire,et al.  Modelling long-term tidal marsh growth under changing tidal conditions and suspended sediment concentrations, Scheldt estuary, Belgium , 2003 .

[4]  W. G. Beeftink Vegetation and habitat of the salt marshes and beach plains in the south-western part of the Netherlands , 1966 .

[5]  J. Pethick,et al.  Long-term Accretion Rates on Tidal Salt Marshes , 1981 .

[6]  Fabián López,et al.  Mean Flow and Turbulence Structure of Open-Channel Flow through Non-Emergent Vegetation , 2001 .

[7]  R. Kadlec Overland flow in wetlands: vegetation resistance. , 1990 .

[8]  Ronald J. Gibbs,et al.  Estuarine flocs: Their size, settling velocity and density , 1985 .

[9]  J. Boon Tidal discharge asymmetry in a salt marsh drainage system1,2 , 1975 .

[10]  G. Seminara,et al.  On tide propagation in convergent estuaries , 1998 .

[11]  Ashish J. Mehta,et al.  Characterization of Cohesive Sediment Properties and Transport Processes in Estuaries , 1986 .

[12]  Enrique R. Vivoni,et al.  Flow structure in depth-limited, vegetated flow , 2000 .

[13]  Andrea Rinaldo,et al.  Tidal network ontogeny: Channel initiation and early development , 2005 .

[14]  H. Nepf Drag, turbulence, and diffusion in flow through emergent vegetation , 1999 .

[15]  T. M. Parchure,et al.  Erosion of soft cohesive sediment deposits , 1985 .

[16]  S. Fagherazzi,et al.  The effect of bidirectional flow on tidal channel planforms , 2004 .

[17]  S. Fagherazzi,et al.  On the shape and widening of salt marsh creeks , 2001 .

[18]  Luna Bergere Leopold,et al.  Hydraulic geometry of a small tidal estuary , 1963 .

[19]  J. Allen Salt-marsh growth and fluctuating sea level: implications of a simulation model for Flandrian coastal stratigraphy and peat-based sea-level curves , 1995 .

[20]  B. Bauer,et al.  Turbulence: Perspectives on Flow and Sediment Transport , 1995 .

[21]  H. Nepf,et al.  Observations of particle capture on a cylindrical collector: Implications for particle accumulation and removal in aquatic systems , 2004 .

[22]  S. Temmerman,et al.  Simulating the long-term development of levee-basin topography on tidal marshes , 2004 .

[23]  J. Pethick Velocity surges and asymmetry in tidal channels , 1980 .

[24]  Betsy Haskin,et al.  A 5‐yr Record of Aerial Primary Production and Stand Characteristics of Spartina Alterniflora , 1990 .

[25]  S. Fagherazzi Basic flow field in a tidal basin , 2002 .

[26]  J. Allen Simulation models of salt-marsh morphodynamics: some implications for high-intertidal sediment couplets related to sea-level change , 1997 .

[27]  A. Rinaldo,et al.  Tidal networks: 2. Watershed delineation and comparative network morphology , 1999 .

[28]  J. Hobbie,et al.  Estuarine science: a synthetic approach to research and practice , 2000 .

[29]  John Robert Lawrence Allen,et al.  Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe , 2000 .

[30]  John Robert Lawrence Allen,et al.  Salt Marsh Morphodynamics: an Investigation of Tidal Flows and Marsh Channel Equilibrium , 2004 .

[31]  A. Hogg,et al.  Cross-shore sediment transport and the equilibrium morphology of mudflats under tidal currents , 2003 .

[32]  A. Rinaldo,et al.  Tidal networks: 1. Automatic network extraction and preliminary scaling features from digital terrain maps , 1999 .

[33]  Marcelo Horacio Garcia,et al.  Experiments on turbidity currents over an erodible bed , 1987 .

[34]  D. Porter,et al.  Stratigraphy and geologic history of a southeastern salt marsh basin, North Inlet, South Carolina, USA , 2001, Wetlands Ecology and Management.

[35]  F. Engelund,et al.  Hydraulic Resistance of Alluvial Streams , 1966 .

[36]  David Jon Furbish,et al.  Flow, Sedimentation, and Biomass Production on a Vegetated Salt Marsh in South Carolina: Toward a Predictive Model of Marsh Morphologic and Ecologic Evolution , 2004 .

[37]  J. W. Webb Soil water salinity variations and their effects on Spartina alterniflora , 1983 .

[38]  D. Johns,et al.  The Salt Marshes of the Dovey Estuary , 1916 .

[39]  E. Gabet Lateral migration and bank erosion in a saltmarsh tidal channel in San Francisco Bay, California , 1998 .

[40]  T. Spencer,et al.  Tidal Flows in Salt Marsh Creeks , 1979 .

[41]  J. French,et al.  Hydrodynamics of salt marsh creek systems: Implications for marsh morphological development and material exchange , 1992 .

[42]  James E. Pizzuto,et al.  Numerical simulation of gravel river widening , 1990 .

[43]  J. Morris,et al.  The mass balance of salt and water in intertidal sediments: Results from North Inlet, South Carolina , 1995 .

[44]  Shi-lun Yang The Role ofScirpusMarsh in Attenuation of Hydrodynamics and Retention of Fine Sediment in the Yangtze Estuary , 1998 .

[45]  T. Sun,et al.  A stochastic model for the formation of channel networks in tidal marshes , 2004, Geophysical Research Letters.

[46]  D. Garofalo The influence of wetland vegetation on tidal stream channel migration and morphology , 1980 .

[47]  Marco Marani,et al.  Tidal meanders , 2002 .

[48]  Andrea Rinaldo,et al.  Tidal networks: 3. Landscape‐forming discharges and studies in empirical geomorphic relationships , 1999 .

[49]  Andrea Rinaldo,et al.  On the drainage density of tidal networks , 2001 .

[50]  J. French,et al.  Numerical simulation of vertical marsh growth and adjustment to accelerated sea‐level rise, North Norfolk, U.K. , 1993 .

[51]  R. Krone A Method for Simulating Historic Marsh Elevations , 1987 .

[52]  L. Gardner,et al.  Geomorphic and hydraulic evolution of tidal creeks on a subsiding beach ridge plain, North Inlet, S.C. , 1980 .

[53]  R. Pestrong The development of drainage patterns on tidal marshes , 1965 .

[54]  S. Fagherazzi,et al.  Tidal flow field in a small basin , 2003 .

[55]  W. L. Wood,et al.  An exploratory numerical model of sediment deposition over tidal salt marshes , 1995 .

[56]  Carl T. Friedrichs,et al.  Stability shear stress and equilibrium cross-sectional geometry of sheltered tidal channels , 1995 .

[57]  C. F. Phleger Effect of Salinity on Growth of a Salt Marsh Grass , 1971 .

[58]  P. Wiberg,et al.  Flow and Sediment Transport on a Tidal Salt Marsh Surface , 2000 .

[59]  J. Fisher,et al.  Effects of stem density upon sediment retention by salt marsh cord grass, Spartina alterniflora loisel , 1979 .

[60]  T. Spencer,et al.  HIGH-FREQUENCY FLOW AND SUSPENDED SEDIMENT MEASUREMENTS IN A TIDAL WETLAND CHANNEL , 1993 .

[61]  R. Healey,et al.  Velocity variations in salt marsh creeks, Norfolk, England , 1981 .

[62]  Andrea Rinaldo,et al.  Tidal meanders , 2002 .

[63]  S. Temmerman,et al.  Spatial and temporal factors controlling short‐term sedimentation in a salt and freshwater tidal marsh, Scheldt estuary, Belgium, SW Netherlands , 2003 .

[64]  L. B. Leopold,et al.  Hydrology of some tidal channels in estuarine marshland near San Francisco , 1993 .

[65]  P. V. Sundareshwar,et al.  RESPONSES OF COASTAL WETLANDS TO RISING SEA LEVEL , 2002 .

[66]  M. Luther,et al.  Flow hydrodynamics in tidal marsh canopies , 1995 .

[67]  H. A. Einstein,et al.  Experiments to determine modes of cohesive sediment transport in salt water , 1962 .