On Resource Placement in Gaussian and EJ Interconnection Networks

In a multiprocessor system, a limited number of resources need to be uniformly distributed so that all processor nodes can have equal access to these resources. This is referred to as the resource placement problem. In a perfect t--placement each nonresource node is at a distance of t or less from exactly one resource node. Here, we first find all perfect t-placements in the infinite square and triangular grids. That information is then used to show that translates of earlier sets are the only perfect t-placements in Gaussian and EJ interconnection networks.

[1]  Nian-Feng Tzeng,et al.  Resource Allocation in Cube Network Systems Based on the Covering Radius , 1996, IEEE Trans. Parallel Distributed Syst..

[2]  Parameswaran Ramanathan,et al.  Resource Placement with Multiple Adjacency Constraints in k-ary n-Cubes , 1995, IEEE Trans. Parallel Distributed Syst..

[3]  Cruz Izu,et al.  Dense Gaussian Networks: Suitable Topologies for On-Chip Multiprocessors , 2006, International Journal of Parallel Programming.

[4]  Bella Bose,et al.  Efficient Communication Algorithms in Hexagonal Mesh Interconnection Networks , 2012, IEEE Transactions on Parallel and Distributed Systems.

[5]  Ivan Stojmenovic,et al.  Addressing and Routing in Hexagonal Networks with Applications for Tracking Mobile Users and Connection Rerouting in Cellular Networks , 2002, IEEE Trans. Parallel Distributed Syst..

[6]  K. Huber,et al.  Codes over Eisenstein-Jacobi integers , 1994 .

[7]  Ramón Beivide,et al.  A Generalization of Perfect Lee Codes over Gaussian Integers , 2006, 2006 IEEE International Symposium on Information Theory.

[8]  Parameswaran Ramanathan,et al.  Performance Analysis of Virtual Cut-Through Switching in HARTS: A Hexagonal Mesh Multicomputer , 1991, IEEE Trans. Computers.

[9]  Kang G. Shin,et al.  Reliable broadcast algorithms for HARTS , 1991, TOCS.

[10]  Ramón Beivide,et al.  Perfect Codes for Metrics Induced by Circulant Graphs , 2007, IEEE Transactions on Information Theory.

[11]  Quentin F. Stout,et al.  Perfect Dominating Sets on Cube-Connected Cycles , 1993 .

[12]  David F. Heidel,et al.  An Overview of the BlueGene/L Supercomputer , 2002, ACM/IEEE SC 2002 Conference (SC'02).

[13]  Alain J. Martin,et al.  Submicron Systems Architecture Project , 1989 .

[14]  Ramón Beivide,et al.  Modeling hexagonal constellations with Eisenstein-Jacobi graphs , 2008, Probl. Inf. Transm..

[15]  Myung M. Bae,et al.  Resource placement in torus-based networks , 1996, Proceedings of International Conference on Parallel Processing.

[16]  Ramón Beivide,et al.  On the perfect t-dominating set problem in circulant graphs and codes over gaussian integers , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[17]  Quentin F. Stout,et al.  PERFECT DOMINATING SETS , 1990 .

[18]  Bella Bose,et al.  The Topology of Gaussian and Eisenstein-Jacobi Interconnection Networks , 2010, IEEE Transactions on Parallel and Distributed Systems.

[19]  Gary L. Mullen,et al.  Finite Fields: Theory, Applications and Algorithms , 1994 .

[20]  William J. Dally,et al.  The J-machine Multicomputer: An Architectural Evaluation , 1993, Proceedings of the 20th Annual International Symposium on Computer Architecture.

[21]  K. Huber,et al.  Codes Over Gaussian Integers , 1993, Proceedings. IEEE International Symposium on Information Theory.

[22]  Ming-Syan Chen,et al.  Addressing, Routing, and Broadcasting in Hexagonal Mesh Multiprocessors , 1990, IEEE Trans. Computers.

[23]  Ramón Beivide,et al.  Modeling Toroidal Networks with the Gaussian Integers , 2008, IEEE Transactions on Computers.