The gradual nature of threshold switching

The recent commercialization of electronic memories based on phase change materials proved the usability of this peculiar family of materials for application purposes. More advanced data storage and computing concepts, however, demand a deeper understanding especially of the electrical properties of the amorphous phase and the switching behaviour. In this work, we investigate the temporal evolution of the current through the amorphous state of the prototypical phase change material, Ge2Sb2Te5, under constant voltage. A custom-made electrical tester allows the measurement of delay times over five orders of magnitude, as well as the transient states of electrical excitation prior to the actual threshold switching. We recognize a continuous current increase over time prior to the actual threshold-switching event to be a good measure for the electrical excitation. A clear correlation between a significant rise in pre-switching-current and the later occurrence of threshold switching can be observed. This way, we found experimental evidence for the existence of an absolute minimum for the threshold voltage (or electric field respectively) holding also for time scales far beyond the measurement range.

[1]  H.-S. Philip Wong,et al.  Phase Change Memory , 2010, Proceedings of the IEEE.

[2]  H. Henisch,et al.  Characteristics and mechanism of threshold switching , 1972 .

[3]  Dong Yu,et al.  Minimum voltage for threshold switching in nanoscale phase-change memory. , 2008, Nano letters.

[4]  Electrical bistability in amorphous semiconductors: A basic analytical theory , 2014 .

[5]  Andrea L. Lacaita,et al.  Switching and programming dynamics in phase-change memory cells , 2005 .

[6]  Time-dependent transport in amorphous semiconductors: Instability in the field-controlled regime , 2014 .

[7]  Daniele Ielmini,et al.  Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses , 2008 .

[8]  S. Balevičius,et al.  Past switching in sandwich structures on the basis of GexTe1 − x alloys , 1987 .

[9]  Robert M. Hill,et al.  Poole-Frenkel conduction in amorphous solids , 1971 .

[10]  A. Pirovano,et al.  Electronic switching in phase-change memories , 2004, IEEE Transactions on Electron Devices.

[11]  D. Kang,et al.  Time-resolved analysis of the set process in an electrical phase-change memory device , 2005 .

[12]  Paolo Fantini,et al.  Three-dimensional Poole-Frenkel analytical model for carrier transport in amorphous chalcogenides , 2013 .

[13]  Victor G. Karpov,et al.  Evidence of field induced nucleation in phase change memory , 2008 .

[14]  D. Adler,et al.  Electrothermal switching in amorphous semiconductors , 1972 .

[15]  B. LeRoy,et al.  Graphene on hexagonal boron nitride , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  P. Walsh,et al.  Threshold switching and the on-state in non-crystalline chalcogenide semiconductors: An interpretation of threshold-switching research , 1975 .

[17]  J. Marshall On the interpretation of high field effects in chalcogenide thin films , 1973 .

[18]  H. Henisch,et al.  MECHANISM OF THRESHOLD SWITCHING , 1971 .

[19]  D. Adler,et al.  Threshold Switching in Chalcogenide-Glass Thin Films , 1980 .

[20]  Matthias Wuttig,et al.  Threshold field of phase change memory materials measured using phase change bridge devices , 2009 .

[21]  J. Grollier,et al.  A ferroelectric memristor. , 2012, Nature materials.

[22]  Doo Seok Jeong,et al.  A study on the temperature dependence of the threshold switching characteristics of Ge2Sb2Te5 , 2010 .

[23]  D. Ielmini,et al.  Transient Simulation of Delay and Switching Effects in Phase-Change Memories , 2010, IEEE Transactions on Electron Devices.

[24]  Victor G. Karpov,et al.  Field-induced nucleation in phase change memory , 2008 .

[25]  S. Kasap,et al.  Lucky-drift model for impact ionization in amorphous semiconductors , 2009 .

[26]  Daniele Ielmini,et al.  Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices , 2007 .

[27]  Victor G. Karpov,et al.  Electrical conduction in chalcogenide glasses of phase change memory , 2012 .

[28]  Daniele Ielmini,et al.  Threshold-Switching Delay Controlled by $\hbox{1}/f$ Current Fluctuations in Phase-Change Memory Devices , 2010, IEEE Transactions on Electron Devices.

[29]  Shih-Hung Chen,et al.  Phase-change random access memory: A scalable technology , 2008, IBM J. Res. Dev..

[30]  A. Pirovano,et al.  Threshold switching and phase transition numerical models for phase change memory simulations , 2008 .

[31]  Luping Shi,et al.  Phase Change Random Access Memory Devices with Nickel Silicide and Platinum Silicide Electrode Contacts for Integration with CMOS Technology , 2011 .

[32]  P. Walsh,et al.  Equations governing threshold switching in amorphous semiconductors , 1974 .

[33]  H. Stiegler,et al.  The switching behavior of chalcogenide glass with semiconducting electrodes , 1972 .

[34]  Roy R. Shanks,et al.  Ovonic threshold switching characteristics , 1970 .

[35]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[36]  Masayuki Ieda,et al.  A Consideration of Poole‐Frenkel Effect on Electric Conduction in Insulators , 1971 .

[37]  M. Breitwisch,et al.  Estimation of amorphous fraction in multilevel phase change memory cells , 2009, 2009 Proceedings of the European Solid State Device Research Conference.

[38]  M. Lankhorst,et al.  Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.

[39]  H.-S. Philip Wong,et al.  1D thickness scaling study of phase change material (Ge2Sb2Te5) using a pseudo 3-terminal device , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[40]  A. Pirovano,et al.  Parasitic reset in the programming transient of PCMs , 2005, IEEE Electron Device Letters.

[41]  I. Karpov,et al.  Nucleation switching in phase change memory , 2007 .

[42]  D. Ielmini,et al.  Hot-carrier trap-limited transport in switching chalcogenides , 2012, 1208.1635.

[43]  D. M. Kroll Theory of electrical instabilities of mixed electronic and thermal origin. II. Switching as a nucleation process , 1972 .

[44]  A. Owen,et al.  Electronic conduction and switching in chalcogenide glasses , 1973 .

[45]  I. P. Zvyagin,et al.  Lucky-drift model for avalanche multiplication in amorphous semiconductors , 2004 .

[46]  Theory of electrical instabilities of mixed electronic and thermal origin , 1972 .

[47]  Y. Chabal,et al.  Study of van der Waals bonding and interactions in metal organic framework materials , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[48]  A. Jonscher,et al.  Electronic properties of amorphous dielectric films , 1967 .

[49]  K. W. Böer,et al.  Temperature Distribution and Its Kinetics in a Semiconducting Sandwich , 1969 .

[50]  Rainer Waser,et al.  Voltage-time dilemma of pure electronic mechanisms in resistive switching memory cells , 2010 .

[51]  Sir Nevill Mott,et al.  The mechanism of threshold switching in amorphous alloys , 1978 .

[52]  T. Suntola,et al.  High field effects in chalcogenide thin films , 1972 .

[53]  D. Ielmini,et al.  Transient effects of delay, switching and recovery in phase change memory (PCM) devices , 2008, 2008 IEEE International Electron Devices Meeting.

[54]  R. Waser,et al.  Function by defects at the atomic scale — new concepts for non-volatile memories , 2010, 2009 Proceedings of ESSCIRC.

[55]  A model for the on state of amorphous chalcogenide threshold switches , 1979 .

[56]  M. Kund,et al.  Nanosecond switching in GeTe phase change memory cells , 2009 .

[57]  H. Henisch,et al.  Thermal and non-thermal processes in threshold switching , 1972 .

[58]  I. Karpov,et al.  Mechanism of Threshold Switching in Chalcogenide Phase Change Memory Devices , 2007, 2007 22nd IEEE Non-Volatile Semiconductor Memory Workshop.

[59]  H. Henisch,et al.  On the time-delay in chalcogenide glass threshold switches , 1972 .

[60]  Kailash Gopalakrishnan,et al.  Overview of candidate device technologies for storage-class memory , 2008, IBM J. Res. Dev..

[61]  Hot-electron conduction in ovonic materials , 2013 .