On the application of ultra-fast fMRI and high resolution multiband fMRI at high static field strengths

An ultrafast functional magnetic resonance imaging (fMRI) technique, called generalized inverse imaging (GIN), is proposed, which combines inverse imaging with a phase constraint leading to a less underdetermined reconstruction and physiological noise correction. A single 3D echo planar imaging (EPI) prescan is sufficient to obtain the necessary coil sensitivity information and reference images that are used to reconstruct standard images, so that standard analysis methods are applicable. A moving dots stimulus paradigm was chosen to assess the performance of GIN. We find that the spatial localization of activation for GIN is comparable to an EPI protocol and that maximum z-scores increase significantly. The high temporal resolution of GIN (50 ms) and the acquisition of the phase information enable unaliased sampling and regression of physiological signals. Using the phase time courses obtained from the 32 channels of the receiver coils as nuisance regressors in a general linear model results in significant improvement of the functional activation, rendering the acquisition of external physiological signals unnecessary. The proposed physiological noise correction can in principle be used for other fMRI protocols, such as simultaneous multislice acquisitions, which acquire the phase information sufficiently fast and sample physiological signals unaliased. Generalized INverse Imaging (GIN) 37

[1]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[2]  Steen Moeller,et al.  Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI , 2010, Magnetic resonance in medicine.

[3]  B. Rosen,et al.  Evidence of a Cerebrovascular Postarteriole Windkessel with Delayed Compliance , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[4]  J Hennig,et al.  Functional Imaging by I0‐ and T2* ‐parameter mapping using multi‐image EPI , 1998, Magnetic resonance in medicine.

[5]  Essa Yacoub,et al.  High-Field fMRI for Human Applications: An Overview of Spatial Resolution and Signal Specificity , 2011, The open neuroimaging journal.

[6]  Jennifer A McNab,et al.  3D steady‐state diffusion‐weighted imaging with trajectory using radially batched internal navigator echoes (TURBINE) , 2010, Magnetic resonance in medicine.

[7]  Maxim Zaitsev,et al.  Enhancement of temporal resolution and BOLD sensitivity in real-time fMRI using multi-slab echo-volumar imaging , 2012, NeuroImage.

[8]  Steen Moeller,et al.  The Human Connectome Project: A data acquisition perspective , 2012, NeuroImage.

[9]  P M Jakob,et al.  VD‐AUTO‐SMASH imaging , 2001, Magnetic resonance in medicine.

[10]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[11]  G H Glover,et al.  Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR , 2000, Magnetic resonance in medicine.

[12]  Simon B. Eickhoff,et al.  Assignment of functional activations to probabilistic cytoarchitectonic areas revisited , 2007, NeuroImage.

[13]  Essa Yacoub,et al.  RASER: A new ultrafast magnetic resonance imaging method , 2007, Magnetic resonance in medicine.

[14]  Stephen M. Smith,et al.  k-t FASTER: a new method for the acceleration of resting state FMRI data acquisition , 2013 .

[15]  K. Uğurbil,et al.  Diffusion‐weighted spin‐echo fMRI at 9.4 T: Microvascular/tissue contribution to BOLD signal changes , 1999, Magnetic resonance in medicine.

[16]  P. Figueiredo,et al.  Signal fluctuations in fMRI data acquired with 2D-EPI and 3D-EPI at 7 Tesla. , 2013, Magnetic resonance imaging.

[17]  Stephen M. Smith,et al.  Investigations into resting-state connectivity using independent component analysis , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[18]  MEDICAL MAGNETIC RESONANCE (MR) PROCEDURES: PROTECTION OF PATIENTS , 2004, Health physics.

[19]  Colin Studholme,et al.  Accurate alignment of functional EPI data to anatomical MRI using a physics-based distortion model , 2000, IEEE Transactions on Medical Imaging.

[20]  Fu-Nien Wang,et al.  Functional MRI using regularized parallel imaging acquisition , 2005, Magnetic resonance in medicine.

[21]  V. Wedeen,et al.  Simultaneous echo refocusing in EPI , 2002, Magnetic resonance in medicine.

[22]  N. Volkow,et al.  Resting Functional Connectivity of Language Networks: Characterization and Reproducibility , 2011, Molecular Psychiatry.

[23]  Peter Börnert,et al.  Parallel RF transmission in MRI , 2006, NMR in biomedicine.

[24]  B. Rosen,et al.  Functional mapping of the human visual cortex by magnetic resonance imaging. , 1991, Science.

[25]  R Turner,et al.  Optimized EPI for fMRI studies of the orbitofrontal cortex , 2003, NeuroImage.

[26]  Ravi S. Menon,et al.  Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[28]  Weili Lin,et al.  Principles of magnetic resonance imaging: a signal processing perspective [Book Review] , 2000 .

[29]  D. Norris,et al.  BOLD contrast sensitivity enhancement and artifact reduction with multiecho EPI: Parallel‐acquired inhomogeneity‐desensitized fMRI , 2006, Magnetic resonance in medicine.

[30]  Xiangyu Long,et al.  Functional segmentation of the brain cortex using high model order group PICA , 2009, Human brain mapping.

[31]  D. Norris Principles of magnetic resonance assessment of brain function , 2006, Journal of magnetic resonance imaging : JMRI.

[32]  K. Uğurbil,et al.  Multiband accelerated spin‐echo echo planar imaging with reduced peak RF power using time‐shifted RF pulses , 2013, Magnetic resonance in medicine.

[33]  David G Norris,et al.  Simultaneous multislice inversion contrast imaging using power independent of the number of slices (PINS) and delays alternating with nutation for tailored excitation (DANTE) radio frequency pulses , 2013, Magnetic resonance in medicine.

[34]  Kawin Setsompop,et al.  Interslice leakage artifact reduction technique for simultaneous multislice acquisitions , 2014, Magnetic resonance in medicine.

[35]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Hennig,et al.  Three‐dimensional MR‐encephalography: Fast volumetric brain imaging using rosette trajectories , 2011, Magnetic resonance in medicine.

[37]  D. Larkman,et al.  Use of multicoil arrays for separation of signal from multiple slices simultaneously excited , 2001, Journal of magnetic resonance imaging : JMRI.

[38]  Peter J. Koopmans,et al.  Whole brain, high resolution spin-echo resting state fMRI using PINS multiplexing at 7T , 2012, NeuroImage.

[39]  N. Filippini,et al.  Distinct patterns of brain activity in young carriers of the APOE e4 allele , 2009, NeuroImage.

[40]  Timothy D. Verstynen,et al.  Using pulse oximetry to account for high and low frequency physiological artifacts in the BOLD signal , 2011, NeuroImage.

[41]  Robin M Heidemann,et al.  Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi‐slice imaging , 2005, Magnetic resonance in medicine.

[42]  Rasmus M. Birn,et al.  The role of physiological noise in resting-state functional connectivity , 2012, NeuroImage.

[43]  Peter A. Bandettini,et al.  Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI , 2006, NeuroImage.

[44]  Lawrence L. Wald,et al.  Three dimensional echo-planar imaging at 7 Tesla , 2010, NeuroImage.

[45]  Peter M. Jakob,et al.  AUTO-SMASH: A self-calibrating technique for SMASH imaging , 1998, Magnetic Resonance Materials in Physics, Biology and Medicine.

[46]  J. Frahm,et al.  Functional MRI of human brain activation at high spatial resolution , 1993, Magnetic resonance in medicine.

[47]  Stephen M. Smith,et al.  Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging , 2010, PloS one.

[48]  David G Norris,et al.  T2‐weighted 3D fMRI using S2‐SSFP at 7 tesla , 2010, Magnetic resonance in medicine.

[49]  J Hennig Chemical shift imaging with phase‐encoding RF pulses , 1992, Magnetic resonance in medicine.

[50]  Jongho Lee,et al.  Functional brain imaging using a blood oxygenation sensitive steady state , 2003, Magnetic resonance in medicine.

[51]  Maxim Zaitsev,et al.  Single shot concentric shells trajectories for ultra fast fMRI , 2012, Magnetic resonance in medicine.

[52]  Markus Barth,et al.  Generalized iNverse imaging (GIN): Ultrafast fMRI with physiological noise correction , 2013, Magnetic resonance in medicine.

[53]  Toralf Mildner,et al.  An Investigation of the Value of Spin-Echo-Based fMRI Using a Stroop Color–Word Matching Task and EPI at 3 T , 2002, NeuroImage.

[54]  J Hennig,et al.  Detection of BOLD changes by means of a frequency‐sensitive trueFISP technique: preliminary results , 2001, NMR in biomedicine.

[55]  R. Buxton,et al.  Dynamics of blood flow and oxygenation changes during brain activation: The balloon model , 1998, Magnetic resonance in medicine.

[56]  Catie Chang,et al.  Time–frequency dynamics of resting-state brain connectivity measured with fMRI , 2010, NeuroImage.

[57]  Essa Yacoub,et al.  Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans , 2005, NeuroImage.

[58]  Stephen M. Smith,et al.  fMRI resting state networks define distinct modes of long-distance interactions in the human brain , 2006, NeuroImage.

[59]  G H Glover,et al.  3D z‐shim method for reduction of susceptibility effects in BOLD fMRI , 1999, Magnetic resonance in medicine.

[60]  Roel H. R. Deckers,et al.  Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 Tesla , 2005, Magnetic resonance in medicine.

[61]  W. Manning,et al.  Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays , 1997, Magnetic resonance in medicine.

[62]  S. Müller,et al.  Multifrequency selective rf pulses for multislice MR imaging , 1988, Magnetic resonance in medicine.

[63]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[64]  Ewald Moser,et al.  The impact of EPI voxel size on SNR and BOLD sensitivity in the anterior medio-temporal lobe: a comparative group study of deactivation of the Default Mode , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[65]  N. Filippini,et al.  Group comparison of resting-state FMRI data using multi-subject ICA and dual regression , 2009, NeuroImage.

[66]  Jean-Baptiste Poline,et al.  A group model for stable multi-subject ICA on fMRI datasets , 2010, NeuroImage.

[67]  Andrew A. Maudsley Multiple Line Scanning Spin Density Imaging , 1981 .

[68]  K. Uğurbil,et al.  Spin‐echo fMRI in humans using high spatial resolutions and high magnetic fields , 2003, Magnetic resonance in medicine.

[69]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[70]  G. McCarthy,et al.  Functional NMR imaging using fast spin echo at 1.5 T , 1994, Magnetic resonance in medicine.

[71]  R. Buxton The Elusive Initial Dip , 2001, NeuroImage.

[72]  J C Gore,et al.  A model for susceptibility artefacts from respiration in functional echo-planar magnetic resonance imaging. , 2000, Physics in medicine and biology.

[73]  Russell A. Poldrack,et al.  Large-scale automated synthesis of human functional neuroimaging data , 2011, Nature Methods.

[74]  Jürgen Hennig,et al.  Single shot whole brain imaging using spherical stack of spirals trajectories , 2013, NeuroImage.

[75]  G. Goelman,et al.  Two methods for peak RF power minimization of multiple inversion‐band pulses , 1997, Magnetic resonance in medicine.

[76]  David G Norris,et al.  Power independent of number of slices (PINS) radiofrequency pulses for low‐power simultaneous multislice excitation , 2011, Magnetic resonance in medicine.

[77]  Robin M Heidemann,et al.  SMASH, SENSE, PILS, GRAPPA: How to Choose the Optimal Method , 2004, Topics in magnetic resonance imaging : TMRI.

[78]  Essa Yacoub,et al.  The rapid development of high speed, resolution and precision in fMRI , 2012, NeuroImage.

[79]  Robin M Heidemann,et al.  Accelerated volumetric MRI with a SENSE/GRAPPA combination , 2006, Journal of magnetic resonance imaging : JMRI.

[80]  Mark J. Lowe,et al.  Isolating physiologic noise sources with independently determined spatial measures , 2007, NeuroImage.

[81]  David G. Norris,et al.  Spin-echo fMRI: The poor relation? , 2012, NeuroImage.

[82]  Hanzhang Lu,et al.  The BOLD post-stimulus undershoot, one of the most debated issues in fMRI , 2012, NeuroImage.

[83]  David G Norris,et al.  A dual echo approach to removing motion artefacts in fMRI time series , 2009, NMR in biomedicine.

[84]  Christian Schwarzbauer,et al.  Dual echo EPI – The method of choice for fMRI in the presence of magnetic field inhomogeneities? , 2010, NeuroImage.

[85]  Yen-Hsiang Wang,et al.  K-space reconstruction of magnetic resonance inverse imaging (K-InI) of human visuomotor systems , 2010, NeuroImage.

[86]  C. Triantafyllou,et al.  Physiological Noise in Gradient Echo and Spin Echo EPI at 3 T and 7 T , 2008 .

[87]  Markus Barth,et al.  An Investigation of RSN Frequency Spectra Using Ultra-Fast Generalized Inverse Imaging , 2013, Front. Hum. Neurosci..

[88]  J. Polimeni,et al.  Physiological noise reduction using volumetric functional magnetic resonance inverse imaging , 2012, Human brain mapping.

[89]  Robert Turner,et al.  Slice accelerated diffusion‐weighted imaging at ultra‐high field strength , 2014, Magnetic resonance in medicine.

[90]  C. Weiller,et al.  Negative Dip in BOLD fMRI Is Caused by Blood Flow— Oxygen Consumption Uncoupling In Humans , 2002, NeuroImage.

[91]  Matti S Hämäläinen,et al.  Dynamic magnetic resonance inverse imaging of human brain function , 2006, Magnetic resonance in medicine.

[92]  B R Rosen,et al.  Mr contrast due to intravascular magnetic susceptibility perturbations , 1995, Magnetic resonance in medicine.

[93]  D. Sodickson Tailored SMASH image reconstructions for robust in vivo parallel MR imaging , 2000, Magnetic resonance in medicine.

[94]  Peter J. Koopmans,et al.  Application of PINS radiofrequency pulses to reduce power deposition in RARE/turbo spin echo imaging of the human head , 2014, Magnetic resonance in medicine.

[95]  Bojana Stefanovic,et al.  Human whole‐blood relaxometry at 1.5T: Assessment of diffusion and exchange models , 2004, Magnetic resonance in medicine.

[96]  C. Beckmann,et al.  Spectral characteristics of resting state networks. , 2011, Progress in brain research.

[97]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[98]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[99]  Jürgen Hennig Functional spectroscopy to no-gradient fMRI , 2012, NeuroImage.

[100]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[101]  James S. Hyde,et al.  Two-Axis Acceleration of Functional Connectivity Magnetic Resonance Imaging by Parallel Excitation of Phase-Tagged Slices and Half k-Space Acceleration , 2011, Brain Connect..

[102]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Irene Tracey,et al.  Assessment of physiological noise modelling methods for functional imaging of the spinal cord , 2012, NeuroImage.

[104]  Aki Vehtari,et al.  Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER , 2012, NeuroImage.

[105]  P. Bandettini,et al.  The effect of respiration variations on independent component analysis results of resting state functional connectivity , 2008, Human brain mapping.

[106]  Kamil Ugurbil,et al.  Enhanced relative BOLD signal changes in T2‐weighted stimulated echoes , 2007, Magnetic resonance in medicine.

[107]  K. Uğurbil,et al.  Microvascular BOLD contribution at 4 and 7 T in the human brain: Gradient‐echo and spin‐echo fMRI with suppression of blood effects , 2003, Magnetic resonance in medicine.

[108]  P. Bandettini,et al.  Echo-planar imaging : theory, technique and application , 1998 .

[109]  Lawrence L. Wald,et al.  Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters , 2005, NeuroImage.

[110]  G. Lohmann,et al.  Color-Word Matching Stroop Task: Separating Interference and Response Conflict , 2001, NeuroImage.

[111]  M. P. Zwiers,et al.  EPI DISTORTION CORRECTION BY CONSTRAINED NONLINEAR COREGISTRATION IMPROVES GROUP FMRI , 2009 .

[112]  Thomas Witzel,et al.  Ultrafast inverse imaging techniques for fMRI , 2012, NeuroImage.

[113]  Steen Moeller,et al.  B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil , 2005, Magnetic resonance in medicine.

[114]  David Feinberg Simultaneous Multi-Slab Echo Volume Imaging: comparison in sub-second fMRI , 2012 .

[115]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[116]  J. Polimeni,et al.  Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty , 2012, Magnetic resonance in medicine.

[117]  Lawrence L. Wald,et al.  Event-related single-shot volumetric functional magnetic resonance inverse imaging of visual processing , 2008, NeuroImage.

[118]  S G Kim,et al.  Magnetic resonance studies of brain function and neurochemistry. , 2000, Annual review of biomedical engineering.

[119]  B. Zahneisen,et al.  A simultaneous EEG and high temporal resolution fMRI study of trial-by-trial fluctuations in visual evoked potentials , 2010 .

[120]  Thomas Witzel,et al.  Multi-projection magnetic resonance inverse imaging of the human visuomotor system , 2012, NeuroImage.

[121]  Oliver Speck,et al.  MR-Encephalography: Fast multi-channel monitoring of brain physiology with magnetic resonance , 2007, NeuroImage.

[122]  Toralf Mildner,et al.  Quantifying the intra‐ and extravascular contributions to spin‐echo fMRI at 3 T , 2004, Magnetic resonance in medicine.

[123]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[124]  P. Boesiger,et al.  Advances in sensitivity encoding with arbitrary k‐space trajectories , 2001, Magnetic resonance in medicine.

[125]  Stephen M. Smith,et al.  Temporally-independent functional modes of spontaneous brain activity , 2012, Proceedings of the National Academy of Sciences.

[126]  Benedikt A. Poser,et al.  Investigating the benefits of multi-echo EPI for fMRI at 7 T , 2009, NeuroImage.

[127]  Jürgen Hennig,et al.  Tracking dynamic resting-state networks at higher frequencies using MR-encephalography , 2013, NeuroImage.

[128]  Lawrence L. Wald,et al.  Physiological noise and signal-to-noise ratio in fMRI with multi-channel array coils , 2011, NeuroImage.

[129]  Gregory R. Lee,et al.  Rapid 3D radial multi-echo functional magnetic resonance imaging , 2010, NeuroImage.

[130]  Markus Barth,et al.  Contrast‐to‐noise ratio (CNR) as a quality parameter in fMRI , 2007, Journal of magnetic resonance imaging : JMRI.

[131]  Jessica A. Turner,et al.  Behavioral Interpretations of Intrinsic Connectivity Networks , 2011, Journal of Cognitive Neuroscience.

[132]  Daniel K Sodickson,et al.  Phase-constrained parallel MR image reconstruction. , 2005, Journal of magnetic resonance.

[133]  Julien Cohen-Adad,et al.  Improving diffusion MRI using simultaneous multi-slice echo planar imaging , 2012, NeuroImage.

[134]  A. Macovski,et al.  Variable-rate selective excitation , 1988 .

[135]  V A Stenger,et al.  Three‐dimensional tailored RF pulses for the reduction of susceptibility artifacts in T*2‐weighted functional MRI , 2000, Magnetic resonance in medicine.

[136]  Peter Boesiger,et al.  Comparison of fMRI activation as measured with gradient- and spin-echo EPI during visual perception , 2005, NeuroImage.

[137]  J. Polimeni,et al.  96‐Channel receive‐only head coil for 3 Tesla: Design optimization and evaluation , 2009, Magnetic resonance in medicine.

[138]  David G Norris,et al.  Fast spin echo sequences for BOLD functional MRI , 2007, Magnetic Resonance Materials in Physics, Biology and Medicine.

[139]  Kawin Setsompop,et al.  Simultaneous multislice excitation by parallel transmission , 2014, Magnetic resonance in medicine.

[140]  Kamil Ugurbil,et al.  An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging , 2009, NeuroImage.

[141]  Kawin Setsompop,et al.  Inter-slice artifact reduction for slice-GRAPPA reconstruction of simultaneous multi-slice ( SMS ) acquisitions , 2011 .

[142]  Ravi S. Menon,et al.  Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. , 1993, Biophysical journal.

[143]  Wen-Ming Luh,et al.  Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI , 2012, NeuroImage.