Multi-budgeted Directed Cuts

In this paper, we study multi-budgeted variants of the classic minimum cut problem and graph separation problems that turned out to be important in parameterized complexity: Skew Multicut and Directed Feedback Arc Set. In our generalization, we assign colors 1,2,…,ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1,2,\ldots ,\ell $$\end{document} to some edges and give separate budgets k1,k2,…,kℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{1},k_{2},\ldots ,k_{\ell }$$\end{document} for colors 1,2,…,ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1,2,\ldots ,\ell $$\end{document}. For every color i∈{1,…,ℓ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\in \{1,\ldots ,\ell \}$$\end{document}, let Ei\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{i}$$\end{document} be the set of edges of color i. The solution C for the multi-budgeted variant of a graph separation problem not only needs to satisfy the usual separation requirements (i.e., be a cut, a skew multicut, or a directed feedback arc set, respectively), but also needs to satisfy that |C∩Ei|≤ki\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|C\cap E_{i}|\le k_{i}$$\end{document} for every i∈{1,…,ℓ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\in \{1,\ldots ,\ell \}$$\end{document}. Contrary to the classic minimum cut problem, the multi-budgeted variant turns out to be NP-hard even for ℓ=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell = 2$$\end{document}. We propose FPT algorithms parameterized by k=k1+⋯+kℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=k_{1}+\cdots +k_{\ell }$$\end{document} for all three problems. To this end, we develop a branching procedure for the multi-budgeted minimum cut problem that measures the progress of the algorithm not by reducing k as usual, by but elevating the capacity of some edges and thus increasing the size of maximum source-to-sink flow. Using the fact that a similar strategy is used to enumerate all important separators of a given size, we merge this process with the flow-guided branching and show an FPT bound on the number of (appropriately defined) important multi-budgeted separators. This allows us to extend our algorithm to the Skew Multicut and Directed Feedback Arc Set problems. Furthermore, we show connections of the multi-budgeted variants with weighted variants of the directed cut problems and the Chainℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-SAT problem, whose parameterized complexity remains an open problem. We show that these problems admit a bounded-in-parameter number of “maximally pushed” solutions (in a similar spirit as important separators are maximally pushed), giving somewhat weak evidence towards their tractability.

[1]  Joseph Naor,et al.  Approximating Minimum Feedback Sets and Multicuts in Directed Graphs , 1998, Algorithmica.

[2]  Stefan Kratsch,et al.  Multi-budgeted directed cuts , 2018, IPEC.

[3]  Barry O'Sullivan,et al.  Almost 2-SAT is Fixed-Parameter Tractable , 2008, J. Comput. Syst. Sci..

[4]  Noga Alon,et al.  Improved approximation for directed cut problems , 2007, STOC '07.

[5]  Mihalis Yannakakis,et al.  Approximate Max-Flow Min-(Multi)Cut Theorems and Their Applications , 1996, SIAM J. Comput..

[6]  Sudipto Guha,et al.  The Steiner k-Cut Problem , 2006, SIAM J. Discret. Math..

[7]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[8]  Mihalis Yannakakis,et al.  Multiway cuts in node weighted graphs , 2004, J. Algorithms.

[9]  Sylvain Guillemot,et al.  FPT algorithms for path-transversal and cycle-transversal problems , 2011, Discret. Optim..

[10]  Dániel Marx,et al.  List H-Coloring a Graph by Removing Few Vertices , 2013, Algorithmica.

[11]  Magnus Wahlström,et al.  Directed Multicut is W[1]-hard, Even for Four Terminal Pairs , 2015, SODA.

[12]  Jianer Chen,et al.  Constrained minimum vertex cover in bipartite graphs: complexity and parameterized algorithms , 2003, J. Comput. Syst. Sci..

[13]  Dániel Marx,et al.  The Multivariate Algorithmic Revolution and Beyond: essays dedicated to Michael R. Fellows on the occasion of His 60th birthday , 2012 .

[14]  Barry O'Sullivan,et al.  A fixed-parameter algorithm for the directed feedback vertex set problem , 2008, JACM.

[15]  Dániel Marx,et al.  What's Next? Future Directions in Parameterized Complexity , 2012, The Multivariate Algorithmic Revolution and Beyond.

[16]  Saket Saurabh,et al.  Parameterized Complexity and Approximability of Directed Odd Cycle Transversal , 2017, SODA.

[17]  Yoichi Iwata,et al.  Linear-time Kernelization for Feedback Vertex Set , 2016, ICALP.

[18]  Saket Saurabh,et al.  A Linear Time Parameterized Algorithm for Directed Feedback Vertex Set , 2016, ArXiv.

[19]  Barry O'Sullivan,et al.  Finding small separators in linear time via treewidth reduction , 2011, TALG.

[20]  Mohammad Taghi Hajiaghayi,et al.  Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable , 2010, TALG.

[21]  Mohammad Taghi Hajiaghayi,et al.  Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable , 2012, ICALP.

[22]  Stefan Kratsch,et al.  Representative Sets and Irrelevant Vertices: New Tools for Kernelization , 2011, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[23]  Stefan Kratsch,et al.  Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal , 2011, TALG.

[24]  Dániel Marx,et al.  Parameterized graph separation problems , 2004, Theor. Comput. Sci..

[25]  Michal Pilipczuk,et al.  On Multiway Cut Parameterized above Lower Bounds , 2011, IPEC.

[26]  Mohammad Taghi Hajiaghayi,et al.  Fixed-parameter tractability of directed multiway cut parameterized by the size of the cutset , 2011, SODA.

[27]  Michal Pilipczuk,et al.  Designing FPT Algorithms for Cut Problems Using Randomized Contractions , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[28]  Dániel Marx,et al.  Fixed-parameter tractability of multicut parameterized by the size of the cutset , 2010, STOC '11.

[29]  Mikkel Thorup,et al.  Rounding algorithms for a geometric embedding of minimum multiway cut , 1999, STOC '99.