In this paper, we study multi-budgeted variants of the classic minimum cut problem and graph separation problems that turned out to be important in parameterized complexity: Skew Multicut and Directed Feedback Arc Set. In our generalization, we assign colors 1,2,…,ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1,2,\ldots ,\ell $$\end{document} to some edges and give separate budgets k1,k2,…,kℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{1},k_{2},\ldots ,k_{\ell }$$\end{document} for colors 1,2,…,ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1,2,\ldots ,\ell $$\end{document}. For every color i∈{1,…,ℓ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\in \{1,\ldots ,\ell \}$$\end{document}, let Ei\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{i}$$\end{document} be the set of edges of color i. The solution C for the multi-budgeted variant of a graph separation problem not only needs to satisfy the usual separation requirements (i.e., be a cut, a skew multicut, or a directed feedback arc set, respectively), but also needs to satisfy that |C∩Ei|≤ki\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|C\cap E_{i}|\le k_{i}$$\end{document} for every i∈{1,…,ℓ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\in \{1,\ldots ,\ell \}$$\end{document}. Contrary to the classic minimum cut problem, the multi-budgeted variant turns out to be NP-hard even for ℓ=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell = 2$$\end{document}. We propose FPT algorithms parameterized by k=k1+⋯+kℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=k_{1}+\cdots +k_{\ell }$$\end{document} for all three problems. To this end, we develop a branching procedure for the multi-budgeted minimum cut problem that measures the progress of the algorithm not by reducing k as usual, by but elevating the capacity of some edges and thus increasing the size of maximum source-to-sink flow. Using the fact that a similar strategy is used to enumerate all important separators of a given size, we merge this process with the flow-guided branching and show an FPT bound on the number of (appropriately defined) important multi-budgeted separators. This allows us to extend our algorithm to the Skew Multicut and Directed Feedback Arc Set problems. Furthermore, we show connections of the multi-budgeted variants with weighted variants of the directed cut problems and the Chainℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-SAT problem, whose parameterized complexity remains an open problem. We show that these problems admit a bounded-in-parameter number of “maximally pushed” solutions (in a similar spirit as important separators are maximally pushed), giving somewhat weak evidence towards their tractability.
[1]
Joseph Naor,et al.
Approximating Minimum Feedback Sets and Multicuts in Directed Graphs
,
1998,
Algorithmica.
[2]
Stefan Kratsch,et al.
Multi-budgeted directed cuts
,
2018,
IPEC.
[3]
Barry O'Sullivan,et al.
Almost 2-SAT is Fixed-Parameter Tractable
,
2008,
J. Comput. Syst. Sci..
[4]
Noga Alon,et al.
Improved approximation for directed cut problems
,
2007,
STOC '07.
[5]
Mihalis Yannakakis,et al.
Approximate Max-Flow Min-(Multi)Cut Theorems and Their Applications
,
1996,
SIAM J. Comput..
[6]
Sudipto Guha,et al.
The Steiner k-Cut Problem
,
2006,
SIAM J. Discret. Math..
[7]
Michal Pilipczuk,et al.
Parameterized Algorithms
,
2015,
Springer International Publishing.
[8]
Mihalis Yannakakis,et al.
Multiway cuts in node weighted graphs
,
2004,
J. Algorithms.
[9]
Sylvain Guillemot,et al.
FPT algorithms for path-transversal and cycle-transversal problems
,
2011,
Discret. Optim..
[10]
Dániel Marx,et al.
List H-Coloring a Graph by Removing Few Vertices
,
2013,
Algorithmica.
[11]
Magnus Wahlström,et al.
Directed Multicut is W[1]-hard, Even for Four Terminal Pairs
,
2015,
SODA.
[12]
Jianer Chen,et al.
Constrained minimum vertex cover in bipartite graphs: complexity and parameterized algorithms
,
2003,
J. Comput. Syst. Sci..
[13]
Dániel Marx,et al.
The Multivariate Algorithmic Revolution and Beyond: essays dedicated to Michael R. Fellows on the occasion of His 60th birthday
,
2012
.
[14]
Barry O'Sullivan,et al.
A fixed-parameter algorithm for the directed feedback vertex set problem
,
2008,
JACM.
[15]
Dániel Marx,et al.
What's Next? Future Directions in Parameterized Complexity
,
2012,
The Multivariate Algorithmic Revolution and Beyond.
[16]
Saket Saurabh,et al.
Parameterized Complexity and Approximability of Directed Odd Cycle Transversal
,
2017,
SODA.
[17]
Yoichi Iwata,et al.
Linear-time Kernelization for Feedback Vertex Set
,
2016,
ICALP.
[18]
Saket Saurabh,et al.
A Linear Time Parameterized Algorithm for Directed Feedback Vertex Set
,
2016,
ArXiv.
[19]
Barry O'Sullivan,et al.
Finding small separators in linear time via treewidth reduction
,
2011,
TALG.
[20]
Mohammad Taghi Hajiaghayi,et al.
Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable
,
2010,
TALG.
[21]
Mohammad Taghi Hajiaghayi,et al.
Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable
,
2012,
ICALP.
[22]
Stefan Kratsch,et al.
Representative Sets and Irrelevant Vertices: New Tools for Kernelization
,
2011,
2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.
[23]
Stefan Kratsch,et al.
Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal
,
2011,
TALG.
[24]
Dániel Marx,et al.
Parameterized graph separation problems
,
2004,
Theor. Comput. Sci..
[25]
Michal Pilipczuk,et al.
On Multiway Cut Parameterized above Lower Bounds
,
2011,
IPEC.
[26]
Mohammad Taghi Hajiaghayi,et al.
Fixed-parameter tractability of directed multiway cut parameterized by the size of the cutset
,
2011,
SODA.
[27]
Michal Pilipczuk,et al.
Designing FPT Algorithms for Cut Problems Using Randomized Contractions
,
2012,
2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.
[28]
Dániel Marx,et al.
Fixed-parameter tractability of multicut parameterized by the size of the cutset
,
2010,
STOC '11.
[29]
Mikkel Thorup,et al.
Rounding algorithms for a geometric embedding of minimum multiway cut
,
1999,
STOC '99.