Steps farther towards micro-nano-mole integration via the multispacer patterning technique

The production of memories with bit density of the order of 1011 cm−2 (projected to be possible within the current silicon technology in 2020 AD) seems now possible by exploiting the hybrid crossbar architecture. This new paradigm (that assigns to silicon the functions of power supply, addressing, sensing and writing, and to reprogrammable molecules the function of memory) requires the solution of a number of new problems not considered yet in integrated-circuit processing. In particular, the most advanced example of hybrid crossbars (Green J E et al 2007 Nature 445 414) does not yet consider the problems of hardware demultiplexing (the connection of wire arrays with a sublithographic pitch of 30 nm to lithographic contacts with pitch 90 nm), the covalent linkage of the functional molecules to the crossbar, and their insertion at the end of process. In this paper it is shown that the multispacer patterning technique (Cerofolini G F et al 2005 Nanotechnology 16 1040) can be adapated to solve all these problems.

[1]  Anirban Bandyopadhyay,et al.  Large conductance switching and memory effects in organic molecules for data-storage applications , 2003 .

[2]  Guido Torelli,et al.  Charge-and-split sense amplifier for multilevel nonvolatile memories , 1999 .

[3]  G. Xu,et al.  Adsorption of phenylacetylene on Si(100)-2×1: Reaction mechanism and formation of a styrene-like π-conjugation system , 2003 .

[4]  C. Galati,et al.  The addition of functional groups to silicon via hydrosilation of 1-alkynes at hydrogen-terminated, 1 × 1 reconstructed, (100) silicon surfaces , 2003 .

[5]  D. P. Woodruff,et al.  Local adsorption geometry of acetylene on Si(100)(2×1) , 2000 .

[6]  R. Bez,et al.  Flash memory and beyond , 2005, IEEE VLSI-TSA International Symposium on VLSI Technology, 2005. (VLSI-TSA-Tech)..

[7]  P. E. Laibinis,et al.  Derivatization of Porous Silicon by Grignard Reagents at Room Temperature , 1998 .

[8]  Frank J. Vergeldt,et al.  Monolayers of 1-Alkynes on the H-Terminated Si(100) Surface , 2000 .

[9]  J. A. Liddle,et al.  One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography , 2005 .

[10]  E. Sudhölter,et al.  Covalently attached monolayers on crystalline hydrogen-terminated silicon: extremely mild attachment by visible light. , 2005, Journal of the American Chemical Society.

[11]  Marco Camalleri,et al.  Strategies for nanoelectronics , 2005 .

[12]  J. Heath,et al.  Bridging Dimensions: Demultiplexing Ultrahigh-Density Nanowire Circuits , 2005, Science.

[13]  T. Sarna,et al.  Rose bengal radicals and their reactivity , 1990 .

[14]  G. Ferla,et al.  Toward a Hybrid Micro-nanoelectronics , 2002 .

[15]  Anirban Bandyopadhyay,et al.  Key to design functional organic molecules for binary operation with large conductance switching , 2003 .

[16]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[17]  M. Reed,et al.  Molecular random access memory cell , 2001 .

[18]  R. Cicero,et al.  Photoreactivity of Unsaturated Compounds with Hydrogen-Terminated Silicon(111) , 2000 .

[19]  R. Hamers,et al.  The role of Pi-conjugation in attachment of organic molecules to the silicon (001) surface , 2002 .

[20]  Chen,et al.  Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. , 1999, Science.

[21]  Ken W. West,et al.  Fabrication of extremely narrow metal wires , 2000 .

[22]  Zhenan Bao,et al.  Control of topography, stress and diffusion at molecule–metal interfaces , 2005, cond-mat/0510371.

[23]  A. Teyssot,et al.  Kinetics of Electrochemical Derivatization of the Silicon Surface by Grignards , 2002 .

[24]  Ernst J. R. Sudhölter,et al.  An Improved Method for the Preparation of Organic Monolayers of 1-Alkenes on Hydrogen-Terminated Silicon Surfaces , 1999 .

[25]  W. H. Weinberg,et al.  Spectroscopic Studies of the Modification of Crystalline Si(111) Surfaces with Covalently-Attached Alkyl Chains Using a Chlorination/Alkylation Method , 2001 .

[26]  C. Galati,et al.  Grafting of 1-alkynes to hydrogen-terminated (100)silicon surfaces , 2005 .

[27]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[28]  R. Waser,et al.  Resistive switching of rose bengal devices: A molecular effect? , 2006 .

[29]  G. Cerofolini,et al.  A hybrid micro-nano-molecular route for nonvolatile memories , 2006 .

[30]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[31]  J. Rasson,et al.  Noise filtering and deconvolution of XPS data by wavelets and Fourier transform , 2004 .

[32]  Tohru Yamamoto,et al.  Two-dimensional molecular electronics circuits. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[33]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[34]  Jillian M. Buriak,et al.  Anodic and cathodic electrografting of alkynes on porous silicon , 1999 .

[35]  Fredrik Jakobsson,et al.  Towards addressable organic impedance switch devices , 2005 .

[36]  C. Galati,et al.  Quantitative XPS analysis of hydrosilated 1‐alkene and 1‐alkyne at terraced, dihydrogen‐terminated, 1 × 1 (100) silicon , 2006 .

[37]  N. Melosh,et al.  Ultrahigh-Density Nanowire Lattices and Circuits , 2003, Science.

[38]  L. Jay Guo,et al.  Recent progress in nanoimprint technology and its applications , 2004 .

[39]  Metal mediated reactions on porous silicon surfaces , 1999 .

[40]  A. Pal,et al.  Large conductance switching and binary operation in organic devices: Role of functional groups , 2003 .

[41]  André DeHon,et al.  Array-based architecture for FET-based, nanoscale electronics , 2003 .

[42]  C. Galati,et al.  Hydrosilation of 1‐alkyne at nearly flat, terraced, homogeneously hydrogen‐terminated silicon (100) surfaces , 2005 .

[43]  L. Renna,et al.  A hybrid approach to nanoelectronics , 2005 .

[44]  J. Tour,et al.  Mass-fabricated one-dimensional silicon nanogaps for hybrid organic/nanoparticle arrays , 2005 .

[45]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[46]  Lon A. Porter,et al.  Hydride Abstraction Initiated Hydrosilylation of Terminal Alkenes and Alkynes on Porous Silicon , 2002 .

[47]  J. Tour,et al.  Direct covalent grafting of conjugated molecules onto Si, GaAs, and Pd surfaces from aryldiazonium salts. , 2004, Journal of the American Chemical Society.

[48]  Stacey F. Bent,et al.  Organic functionalization of group IV semiconductor surfaces: principles, examples, applications, and prospects , 2002 .

[49]  H. Sun,et al.  COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds , 1998 .

[50]  C. Galati,et al.  Functionalization of the (100) surface of hydrogen-terminated silicon via hydrosilation of 1-alkyne , 2003 .

[51]  Evert Seevinck,et al.  Current-mode techniques for high-speed VLSI circuits with application to current sense amplifier for CMOS SRAM's , 1991 .

[52]  M. Sailor,et al.  Reaction of Photoluminescent Porous Silicon Surfaces with Lithium Reagents To Form Silicon−Carbon Bound Surface Species , 1999 .

[53]  Richard F. Heck,et al.  Acylation, methylation, and carboxyalkylation of olefins by Group VIII metal derivatives , 1968 .

[54]  Jean-Paul Rasson,et al.  XPS data analysis via Wavelets and Fourier Transform. , 2004 .

[55]  Michael J. Sailor,et al.  Chemical Stability of Porous Silicon Surfaces Electrochemically Modified with Functional Alkyl Species , 2003 .

[56]  Amar H. Flood,et al.  Nanoelectronic devices from self-organized molecular switches , 2005 .

[57]  R. Hamers,et al.  Interaction of π-Conjugated Organic Molecules with π-Bonded Semiconductor Surfaces: Structure, Selectivity, and Mechanistic Implications , 2000 .

[58]  Liang Fang,et al.  Formation of π-conjugated molecular arrays on silicon (0 0 1) surfaces by heteroatomic Diels-Alder chemistry , 2002 .

[59]  I. Fragalà,et al.  Functionalization of atomically flat, dihydrogen terminated, 1×1 (1 0 0) silicon via reaction with 1-alkyne , 2005 .

[60]  R. Hamers,et al.  An X-ray photoelectron spectroscopy study of the bonding of unsaturated organic molecules to the Si(001) surface , 1998 .

[61]  Matthew R. Linford,et al.  Alkyl Monolayers on Silicon Prepared from 1-Alkenes and Hydrogen-Terminated Silicon , 1995 .

[62]  C. Lieber,et al.  Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems , 2003, Science.

[63]  A. Bandyopadhyay,et al.  Electrical bistability in molecular films: transition from memory to threshold switching , 2004 .

[64]  Anirban Bandyopadhyay,et al.  Memory-switching phenomenon in acceptor-rich organic molecules: impedance spectroscopic studies. , 2005, The journal of physical chemistry. B.

[65]  Mark A Ratner,et al.  Molecular electronics: some views on transport junctions and beyond. , 2005, Proceedings of the National Academy of Sciences of the United States of America.