Inferring microstructure and turbulence properties in rain through observations and simulations of signal spectra measured with Doppler–polarimetric radars

Doppler radars are able to measure important parameters of the target velocity. In contrast, polarimetric radars are very sensitive to features of the target shape and orientation relative to the radar beam direction. This chapter describes a novel Doppler–polarimetric approach to radar remote sensing. The combination of the Doppler ability and polarization diversity in the radar technology enables more comprehensive investigations of objects and phenomena in radar coverage. The discussion is adapted to the case of atmospheric remote sensing. A special case of cloud and precipitation observations is considered in greater detail. Mathematical models of signals and spectra of Doppler–polarimetric returns are discussed. It is demonstrated (theoretically, by simulation, and by real data processing) that important parameters of dynamic characteristics and microstructure of meteorological objects can be retrieved from Doppler–polarimetric observations. These results lead to new interesting and important applications like turbulence intensity measurement, drop size distribution estimation, recognition of type of scatterers, detection of hail zones, etc.

[1]  R. Magruder,et al.  RADAR SCATTERING BY NON-SPHERICAL PARTICLES (RADIOLOKATSIONNOE RASSEIANIE NESFERICHESKIMI CHASTITSAMI) , 1963 .

[2]  Michel Loève,et al.  Probability Theory I , 1977 .

[3]  Paul B. MacCready,et al.  Standardization of Gustiness Values from Aircraft , 1964 .

[4]  G. Foote,et al.  Terminal Velocity of Raindrops Aloft , 1969 .

[5]  H. R. Pruppacher,et al.  A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air , 1970 .

[6]  H. Pruppacher,et al.  A Semi-Empirical Determination of the Shape of Cloud and Rain Drops , 1971 .

[7]  N. K. Vinnichenko,et al.  Turbulence in the Free Atmosphere , 1972 .

[8]  R. C. Srivastava,et al.  Doppler radar characteristics of precipitation at vertical incidence , 1973 .

[9]  V. N. Bringi,et al.  Potential Use of Radar Differential Reflectivity Measurements at Orthogonal Polarizations for Measuring Precipitation , 1976 .

[10]  G. Brussaard,et al.  A meteorological model for rain-induced cross polarization , 1976 .

[11]  L. P. Ligthart,et al.  F.M.-C.W. Delft atmospheric research radar , 1980 .

[12]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[13]  D. Zrnic,et al.  Doppler Radar and Weather Observations , 1984 .

[14]  K. Beard,et al.  A New Model for the Equilibrium Shape of Raindrops , 1987 .

[15]  T. A. Seliga,et al.  Polarization Diversity in Radar Meteorology: Early Developments , 1990 .

[16]  Leo P. Ligthart,et al.  Effective permittivity of and scattering from wet snow and ice droplets at weather radar wavelengths , 1990 .

[17]  The Early Years of Doppler Radar in Meteorology , 1990 .

[18]  David Atlas,et al.  Radar in Meteorology , 1990 .

[19]  H. Russchenberg,et al.  Ground-based remote sensing of precipitation using a multi-polarized FM-CW Doppler radar , 1992 .

[20]  K. Beard,et al.  Laboratory Measurements of Spontaneous Oscillations for Moderate-Size Raindrops , 1993 .

[21]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[22]  Alexander B. Kostinski,et al.  The Use of Optimal Polarizations for Studying the Microphysics of Precipitation: Nonattenuating Wavelengths , 1995 .

[23]  K. Beard,et al.  A field study of raindrop oscillations. Part I: Observation of size spectra and evaluation of oscillation causes , 1996 .

[24]  F. Yanovsky Simulation Study Of 10 Ghz Radar Backscattering From Clouds, And Solution Of The Inverse Problem of Atmospheric Turbulence Measurements , 1996 .

[25]  A. Illingworth,et al.  Differential Doppler Velocity: A Radar Parameter for Characterizing Hydrometeor Size Distributions , 1997 .

[26]  L. Ligthart,et al.  First Measurements with TARA; An S-Band Transportable Atmospheric Radar , 2000 .

[27]  L.P. Ligthart,et al.  Microwave remote sensing of dangerous meteorological phenomena , 2000, 13th International Conference on Microwaves, Radar and Wireless Communications. MIKON - 2000. Conference Proceedings (IEEE Cat. No.00EX428).

[28]  Alexander V. Ryzhkov,et al.  Interpretation of Polarimetric Radar Covariance Matrix for Meteorological Scatterers: Theoretical Analysis , 2001 .

[29]  V. Chandrasekar,et al.  Polarimetric Doppler Weather Radar: Principles and Applications , 2001 .

[30]  V. Chandrasekar,et al.  Polarimetric Doppler Weather Radar , 2001 .

[31]  A. I. Kozlov,et al.  Mathematical and Physical Modelling of Microwave Scattering and Polarimetric Remote Sensing , 2001 .

[32]  F. J. Yanovsky Phenomenological models of Doppler-polarimetric microwave remote sensing of clouds and precipitation , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[33]  Christine Unal,et al.  Combined Doppler and Polarimetric Radar Measurements: Correction for Spectrum Aliasing and Nonsimultaneous Polarimetric Measurements , 2004 .

[34]  H. Russchenberg,et al.  Retrieval of information about turbulence in rain by using Doppler-polarimetric Radar , 2005, IEEE Transactions on Microwave Theory and Techniques.

[35]  Svetlana Bachmann,et al.  Spectral Density of Polarimetric Variables Separating Biological Scatterers in the VAD Display , 2007 .

[36]  Leo P. Ligthart,et al.  Doppler-Polarimetric Weather Radar: Returns from Wide Spread Precipitation , 2007 .

[37]  Spectral analysis of dual-polarization radar signals in a tornadic supercell storm , 2008 .

[38]  D. Zrnic Weather radar - recent developments and trends , 2008, 2008 Microwaves, Radar and Remote Sensing Symposium.

[39]  F. Yanovsky,et al.  DDV — novel Doppler-polarimetric technique for remote sensing of precipitation , 2009, 2009 European Radar Conference (EuRAD).

[40]  F. Yanovsky,et al.  Simulation study of relationships between Doppler-polarimetric parameters at microwave remote sensing of precipitation , 2010, The 7th European Radar Conference.

[41]  F. Yanovsky,et al.  Analysis of differential Doppler velocity for remote sensing of clouds and precipitation with dual-polarization S-band radar , 2010, International Journal of Microwave and Wireless Technologies.