Definition and Demonstration of a Methodology for Validating Aircraft Trajectory Predictors

This paper presents a new methodology for validating an aircraft trajectory predictor, inspired by the lessons learned from a number of field trials, flight tests and simulation experiments for the development of trajectory-predictor-based automation. The methodology introduces new techniques and a new multi-staged approach to reduce the effort in identifying and resolving validation failures, avoiding the potentially large costs associated with failures during a single-stage, pass/fail approach. As a case study, the validation effort performed by the Federal Aviation Administration for its En Route Automation Modernization (ERAM) system is analyzed to illustrate the real-world applicability of this methodology. During this validation effort, ERAM initially failed to achieve six of its eight requirements associated with trajectory prediction and conflict probe. The ERAM validation issues have since been addressed, but to illustrate how the methodology could have benefited the FAA effort, additional techniques are presented that could have been used to resolve some of these issues. Using data from the ERAM validation effort, it is demonstrated that these new techniques could have identified trajectory prediction error sources that contributed to several of the unmet ERAM requirements.