Cones of positive maps and their duality relations
暂无分享,去创建一个
Karol Zyczkowski | Lukasz Skowronek | E. Størmer | K. Życzkowski | Lukasz Skowronek | Erling Stormer
[1] E. Størmer. Positive linear maps of Cu * -algebras , 1974 .
[2] Seung-Hyeok Kye,et al. DUALITY FOR POSITIVE LINEAR MAPS IN MATRIX ALGEBRAS , 2000 .
[3] M. Lewenstein,et al. Schmidt number witnesses and bound entanglement , 2000, quant-ph/0009109.
[4] Kedar S. Ranade,et al. The Jamiołkowski Isomorphism and a Simplified Proof for the Correspondence Between Vectors Having Schmidt Number k and k-Positive Maps , 2007, Open Syst. Inf. Dyn..
[5] Kil-Chan Ha. A class of atomic positive linear maps in matrix algebras , 2003 .
[6] H. Osaka. Indecomposable positive maps in low dimensional matrix algebras , 1991 .
[7] H. Weinfurter,et al. Witnessing multipartite entanglement , 2003, quant-ph/0309043.
[8] P. M. Mathews,et al. STOCHASTIC DYNAMICS OF QUANTUM-MECHANICAL SYSTEMS , 1961 .
[9] Andrzej Kossakowski,et al. A Class of Linear Positive Maps in Matrix Algebras , 2003, Open Syst. Inf. Dyn..
[10] A. Robertson. Positive Projections on C*-Algebras and an Extremal Positive Map , 1985 .
[11] Christian Kurtsiefer,et al. Experimental detection of multipartite entanglement using witness operators. , 2004, Physical review letters.
[12] M. Horodecki,et al. Quantum entanglement , 2007, quant-ph/0702225.
[13] S. Woronowicz. Nonextendible positive maps , 1976 .
[14] Seung-Hyeok Kye. Facial structures for unital positive linear maps in the two-dimensional matrix algebra , 2003 .
[15] Karol Zyczkowski,et al. Geometry of sets of quantum maps: A generic positive map acting on a high-dimensional system is not completely positive , 2007, 0710.1571.
[16] 棚橋 浩太郎,et al. INDECOMPOSABLE POSITIVE MAPS IN MATRIX ALGEBRAS , 1988 .
[17] William Arveson,et al. Subalgebras ofC*-algebras , 1969 .
[18] M. Koashi,et al. Fidelity estimation and entanglement verification for experimentally produced four-qubit cluster states , 2006 .
[19] G. Sarbicki. Spectral properties of entanglement witnesses , 2007, 0711.1936.
[20] W. Majewski,et al. On a characterization of positive maps , 2001 .
[21] E. Størmer. DECOMPOSABLE POSITIVE MAPS ON C*-ALGEBRAS , 1982 .
[22] W. Stinespring. Positive functions on *-algebras , 1955 .
[23] Giuseppe Marmo,et al. Relations Between Quantum Maps and Quantum States , 2005, Open Syst. Inf. Dyn..
[24] J. Pillis. Linear transformations which preserve hermitian and positive semidefinite operators. , 1967 .
[25] S. Woronowicz. Positive maps of low dimensional matrix algebras , 1976 .
[26] T. Andô. Cones and norms in the tensor product of matrix spaces , 2004 .
[27] Andrzej Kossakowski,et al. On the Structure of Entanglement Witnesses and New Class of Positive Indecomposable Maps , 2007, Open Syst. Inf. Dyn..
[28] Kil-Chan Ha,et al. Atomic positive linear maps in matrix algebras , 1998 .
[29] Dariusz Chruściński,et al. Spectral Conditions for Positive Maps , 2008, 0809.4909.
[30] M. Horodecki,et al. Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.
[31] M. Horodecki,et al. BOUND ENTANGLEMENT CAN BE ACTIVATED , 1998, quant-ph/9806058.
[32] Masato Koashi,et al. Generation of high-fidelity four-photon cluster state and quantum-domain demonstration of one-way quantum computing. , 2008, Physical review letters.
[33] P. Horodecki,et al. Schmidt number for density matrices , 1999, quant-ph/9911117.
[34] L. Clarisse. Characterization of distillability of entanglement in terms of positive maps , 2004, quant-ph/0403073.
[35] Toshiyuki Takasaki,et al. On the geometry of positive maps in matrix algebras , 1983 .
[36] Dagmar Bruß,et al. Simplifying schmidt number witnesses via higher-dimensional embeddings , 2004, Quantum Inf. Comput..
[37] Erling Størmer,et al. Extension of positive maps into B (H) , 1986 .
[38] E. Størmer. Separable states and positive maps , 2007, 0710.3071.
[39] A. Jamiołkowski. Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .
[40] Karol Zyczkowski,et al. On Duality between Quantum Maps and Quantum States , 2004, Open Syst. Inf. Dyn..
[41] O. Gühne,et al. Experimental detection of entanglement via witness operators and local measurements , 2002, quant-ph/0210134.
[42] K. Kraus. General state changes in quantum theory , 1971 .
[43] M. Ruskai,et al. Entanglement Breaking Channels , 2003, quant-ph/0302031.
[44] K. Życzkowski,et al. Geometry of Quantum States , 2007 .
[45] G. Sarbicki. General theory of detection and optimality , 2009, 0905.0778.
[46] J. Kowski. Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .
[47] W. Arveson. On subalgebras of $C^*$-algebras , 1969 .
[48] Man-Duen Choi. Completely positive linear maps on complex matrices , 1975 .
[49] A. S. Holevo,et al. Separability and Entanglement-Breaking in Infinite Dimensions , 2005, quant-ph/0504204.
[50] E. Størmer. Positive linear maps of operator algebras , 2012 .
[51] Man-Duen Choi. Positive semidefinite biquadratic forms , 1975 .
[52] A. Acin,et al. Structural approximations to positive maps and entanglement-breaking channels , 2008, 0808.1052.
[53] Fabio Benatti,et al. Non-Decomposable Quantum Dynamical Semigroups and Bound Entangled States , 2004, Open Syst. Inf. Dyn..
[54] J. Cirac,et al. Optimization of entanglement witnesses , 2000, quant-ph/0005014.
[55] Seung-Hyeok Kye,et al. Generalized Choi maps in three-dimensional matrix algebra , 1992 .
[56] E. Størmer,et al. Duality of cones of positive maps , 2008, 0810.4253.
[57] Andrzej Kossakowski,et al. A Class of Linear Positive Maps in Matrix Algebras II , 2004, Open Syst. Inf. Dyn..
[58] B. Terhal. Bell inequalities and the separability criterion , 1999, quant-ph/9911057.
[59] Pérès. Separability Criterion for Density Matrices. , 1996, Physical review letters.
[60] M. Horodecki,et al. Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.
[61] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .