Cones of positive maps and their duality relations

The structure of cones of positive and k-positive maps acting on a finite-dimensional Hilbert space is investigated. Special emphasis is given to their duality relations to the sets of superpositive and k-superpositive maps. We characterize k-positive and k-superpositive maps with regard to their properties under taking compositions. A number of results obtained for maps are also rephrased for the corresponding cones of block positive, k-block positive, separable, and k-entangled operators due to the Jamiolkowski–Choi isomorphism. Generalizations to a situation where no such simple isomorphism is available are also made, employing the idea of mapping cones. As a side result to our discussion, we show that extreme entanglement witnesses, which are optimal, should be of special interest in entanglement studies.

[1]  E. Størmer Positive linear maps of Cu * -algebras , 1974 .

[2]  Seung-Hyeok Kye,et al.  DUALITY FOR POSITIVE LINEAR MAPS IN MATRIX ALGEBRAS , 2000 .

[3]  M. Lewenstein,et al.  Schmidt number witnesses and bound entanglement , 2000, quant-ph/0009109.

[4]  Kedar S. Ranade,et al.  The Jamiołkowski Isomorphism and a Simplified Proof for the Correspondence Between Vectors Having Schmidt Number k and k-Positive Maps , 2007, Open Syst. Inf. Dyn..

[5]  Kil-Chan Ha A class of atomic positive linear maps in matrix algebras , 2003 .

[6]  H. Osaka Indecomposable positive maps in low dimensional matrix algebras , 1991 .

[7]  H. Weinfurter,et al.  Witnessing multipartite entanglement , 2003, quant-ph/0309043.

[8]  P. M. Mathews,et al.  STOCHASTIC DYNAMICS OF QUANTUM-MECHANICAL SYSTEMS , 1961 .

[9]  Andrzej Kossakowski,et al.  A Class of Linear Positive Maps in Matrix Algebras , 2003, Open Syst. Inf. Dyn..

[10]  A. Robertson Positive Projections on C*-Algebras and an Extremal Positive Map , 1985 .

[11]  Christian Kurtsiefer,et al.  Experimental detection of multipartite entanglement using witness operators. , 2004, Physical review letters.

[12]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[13]  S. Woronowicz Nonextendible positive maps , 1976 .

[14]  Seung-Hyeok Kye Facial structures for unital positive linear maps in the two-dimensional matrix algebra , 2003 .

[15]  Karol Zyczkowski,et al.  Geometry of sets of quantum maps: A generic positive map acting on a high-dimensional system is not completely positive , 2007, 0710.1571.

[16]  棚橋 浩太郎,et al.  INDECOMPOSABLE POSITIVE MAPS IN MATRIX ALGEBRAS , 1988 .

[17]  William Arveson,et al.  Subalgebras ofC*-algebras , 1969 .

[18]  M. Koashi,et al.  Fidelity estimation and entanglement verification for experimentally produced four-qubit cluster states , 2006 .

[19]  G. Sarbicki Spectral properties of entanglement witnesses , 2007, 0711.1936.

[20]  W. Majewski,et al.  On a characterization of positive maps , 2001 .

[21]  E. Størmer DECOMPOSABLE POSITIVE MAPS ON C*-ALGEBRAS , 1982 .

[22]  W. Stinespring Positive functions on *-algebras , 1955 .

[23]  Giuseppe Marmo,et al.  Relations Between Quantum Maps and Quantum States , 2005, Open Syst. Inf. Dyn..

[24]  J. Pillis Linear transformations which preserve hermitian and positive semidefinite operators. , 1967 .

[25]  S. Woronowicz Positive maps of low dimensional matrix algebras , 1976 .

[26]  T. Andô Cones and norms in the tensor product of matrix spaces , 2004 .

[27]  Andrzej Kossakowski,et al.  On the Structure of Entanglement Witnesses and New Class of Positive Indecomposable Maps , 2007, Open Syst. Inf. Dyn..

[28]  Kil-Chan Ha,et al.  Atomic positive linear maps in matrix algebras , 1998 .

[29]  Dariusz Chruściński,et al.  Spectral Conditions for Positive Maps , 2008, 0809.4909.

[30]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[31]  M. Horodecki,et al.  BOUND ENTANGLEMENT CAN BE ACTIVATED , 1998, quant-ph/9806058.

[32]  Masato Koashi,et al.  Generation of high-fidelity four-photon cluster state and quantum-domain demonstration of one-way quantum computing. , 2008, Physical review letters.

[33]  P. Horodecki,et al.  Schmidt number for density matrices , 1999, quant-ph/9911117.

[34]  L. Clarisse Characterization of distillability of entanglement in terms of positive maps , 2004, quant-ph/0403073.

[35]  Toshiyuki Takasaki,et al.  On the geometry of positive maps in matrix algebras , 1983 .

[36]  Dagmar Bruß,et al.  Simplifying schmidt number witnesses via higher-dimensional embeddings , 2004, Quantum Inf. Comput..

[37]  Erling Størmer,et al.  Extension of positive maps into B (H) , 1986 .

[38]  E. Størmer Separable states and positive maps , 2007, 0710.3071.

[39]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[40]  Karol Zyczkowski,et al.  On Duality between Quantum Maps and Quantum States , 2004, Open Syst. Inf. Dyn..

[41]  O. Gühne,et al.  Experimental detection of entanglement via witness operators and local measurements , 2002, quant-ph/0210134.

[42]  K. Kraus General state changes in quantum theory , 1971 .

[43]  M. Ruskai,et al.  Entanglement Breaking Channels , 2003, quant-ph/0302031.

[44]  K. Życzkowski,et al.  Geometry of Quantum States , 2007 .

[45]  G. Sarbicki General theory of detection and optimality , 2009, 0905.0778.

[46]  J. Kowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[47]  W. Arveson On subalgebras of $C^*$-algebras , 1969 .

[48]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[49]  A. S. Holevo,et al.  Separability and Entanglement-Breaking in Infinite Dimensions , 2005, quant-ph/0504204.

[50]  E. Størmer Positive linear maps of operator algebras , 2012 .

[51]  Man-Duen Choi Positive semidefinite biquadratic forms , 1975 .

[52]  A. Acin,et al.  Structural approximations to positive maps and entanglement-breaking channels , 2008, 0808.1052.

[53]  Fabio Benatti,et al.  Non-Decomposable Quantum Dynamical Semigroups and Bound Entangled States , 2004, Open Syst. Inf. Dyn..

[54]  J. Cirac,et al.  Optimization of entanglement witnesses , 2000, quant-ph/0005014.

[55]  Seung-Hyeok Kye,et al.  Generalized Choi maps in three-dimensional matrix algebra , 1992 .

[56]  E. Størmer,et al.  Duality of cones of positive maps , 2008, 0810.4253.

[57]  Andrzej Kossakowski,et al.  A Class of Linear Positive Maps in Matrix Algebras II , 2004, Open Syst. Inf. Dyn..

[58]  B. Terhal Bell inequalities and the separability criterion , 1999, quant-ph/9911057.

[59]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[60]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[61]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .