Effect of different doses of saponins and salinity on giant tiger prawn Penaeus monodon and Nile tilapia Oreochromis niloticus

The Nile Tilapia Oreochromis niloticus is considering as a pest in shrimp farming ponds, as it is a shrimp competitor and predator of benthic organisms. This study aims to determine the effective and efficient saponins doses to eradicate tilapia without causing shrimp mortality. The study used two different saponins doses (200 kg/ha and 100 kg/ha) with seven different levels of salinity (5, 10, 15, 20, 25, 30, 35 ppt). The saponins doses used in this study had no effect on shrimp mortality, but had a significant effect on mortality of nile tilapia. The mortality of nile tilapia was 100% for all treatments. The death time of nile tilapia decreased significantly with increasing salinity. Longest nile tilapia death time was found at 10 ppt water salinity; this salinity is close to that of body fluids (14 ppt). The greater the difference between the ion content of body fluids and water ions in the test media, the faster the time of death. The effects of bleeding on the operculum, pectoral and caudal fins are more severe at high salinity. It is advisable not to increase the saponins doses, use the same saponins doses at any salinity, because predatory and competitive fish will die at any salinity.

[1]  Syafiuddin,et al.  Low salinity reduces survival rate of a commercially important sea cucumber (Sandfish: Holothuria scabra) , 2020, IOP Conference Series: Earth and Environmental Science.

[2]  R. Syah,et al.  The utilizations of solid waste originating from super intensive shrimp farm as organic fertilizers for natural feed productions , 2020, IOP Conference Series: Earth and Environmental Science.

[3]  Syafiuddin,et al.  Size at the maturity of sea cucumber Holothuria scabra. Is it an overfishing sign in Wallacea Region? , 2020, IOP Conference Series: Earth and Environmental Science.

[4]  A. Tuwo,et al.  Applying Organic Fertilizer from Solid Waste of Super Intensive Shrimp Pond on Production of Milkfish Fingerlings Chanos chanos (Forsskal, 1775) , 2020 .

[5]  Mutmainnah,et al.  A Microcosm Multitrophic Aquaculture System , 2019, IOP Conference Series: Earth and Environmental Science.

[6]  Mutmainnah,et al.  Predators effects on mortality of sandfish Holothuria scabra cultured in multitrophic system , 2019, Journal of Physics: Conference Series.

[7]  A. Tuwo,et al.  Potential, Characteristics and Utilization of Shrimp Pond Solid Waste as Organic Fertilizer , 2019, International Journal of Environment, Agriculture and Biotechnology.

[8]  T. Mardiana,et al.  PENGARUH PEMBERIAN SAPONIN DENGAN DOSIS BERBEDA TERHADAP MORTALITAS IKAN KAKAP PUTIH (Lates calcalifer) , 2019, Pena Akuatika : Jurnal Ilmiah Perikanan dan Kelautan.

[9]  Akhmad Mustafa,et al.  Penentuan Faktor Pengelolaan Tambak Yang Mempengaruhi Produktivitas Tambak Kabupaten Mamuju, Provinsi Sulawesi Barat [Determining Of Brackishwater Pond Management Factors That Effect On The Brackishwater Pond Productivity In Mamuju Regency, West Sulawesi Province] , 2010, Jurnal Ilmiah Perikanan dan Kelautan.

[10]  Yuktiana Kharisma,et al.  Toksisitas Akut Ekstrak Air Buah Pepaya ( Carica papaya L.) Muda terhadap Morfologi Eritrosit , 2017 .

[11]  Petrus Rani Pong-Masak,et al.  HUBUNGAN PRODUKTIVITAS TAMBAK DENGAN KERAGAMAN FITOPLANKTON DI SULAWESI SELATAN , 2016 .

[12]  Akhmad Mustafa,et al.  FAKTOR-FAKTOR DOMINAN YANG MEMPENGARUHI PRODUKTIVITAS TAMBAK DI KABUPATEN PINRANG, SULAWESI SELATAN , 2016 .

[13]  A. Tompo,et al.  KESESUAIAN LAHAN DAN REVITALISASI TAMBAK BUDIDAYA UDANG DI KAWASAN INDUSTRIALISASI KABUPATEN PROBOLINGGO PROVINSI JAWA TIMUR , 2014 .

[14]  M. Hidayanto,et al.  ANALISIS TANAH TAMBAK SEBAGAI INDIKATOR TINGKAT KESUBURAN TAMBAK , 2014 .

[15]  E. Ratnawati BUDIDAYA UDANG WINDU (Penaeus monodon) SISTEM SEMI-INTENSIF PADA TAMBAK TANAH SULFAT MASAM , 2008 .

[16]  Khairul Amri BUDI DAYA UDANG WINDU SECARA INTENSIF , 2003 .

[17]  P. Menasveta Improved Shrimp Growout Systems for Disease Prevention and Environmental Sustainability in Asia , 2002 .

[18]  B. Bengtsson,et al.  Chemicals and biological products used in south-east Asian shrimp farming, and their potential impact on the environment--a review. , 2001, The Science of the total environment.

[19]  Y. Lu,et al.  Triterpenoid saponins from the roots of tea plant (Camellia sinensis var. assamica). , 2000, Phytochemistry.

[20]  P. Sandifer,et al.  Conceptual design of a sustainable pond-based shrimp culture system , 1996 .

[21]  N. Watanabe,et al.  A new glucuronide saponin from tea leaves (Camellia sinensis var. sinensis. , 1994, Bioscience, biotechnology, and biochemistry.

[22]  C. Folke,et al.  Aquaculture with its environment: Prospects for sustainability , 1992 .

[23]  W. R. Hunt,et al.  An Introduction to Biology , 1942, The Yale Journal of Biology and Medicine.