Effect of Dissolution and Precipitation of Nb on Phase Transformation, Microstructure, and Microhardness of Two High-Nb Pipeline Steels

[1]  F. Xiao,et al.  Precipitation kinetics of Nb carbonitride in austenite and acicular ferrite and its effect on hardness of high-Nb steel , 2016 .

[2]  F. Xiao,et al.  Non-isothermal prior austenite grain growth of a high-Nb X100 pipeline steel during a simulated welding heat cycle process , 2016 .

[3]  Guang Xu,et al.  The effects of Nb and Mo addition on transformation and properties in low carbon bainitic steels , 2015 .

[4]  Sumit Ghosh,et al.  Thermomechanical processing of low carbon Nb–Ti stabilized microalloyed steel: Microstructure and mechanical properties , 2015 .

[5]  E. Pereloma,et al.  Strengthening Mechanisms in Thermomechanically Processed NbTi-Microalloyed Steel , 2015, Metallurgical and Materials Transactions A.

[6]  L. Du,et al.  Microstructure and mechanical properties of a novel 1000 MPa grade TMCP low carbon microalloyed steel with combination of high strength and excellent toughness , 2014 .

[7]  L. Du,et al.  Microstructure of Nb‐Bearing Pipeline Steel with Improved Property Applying Ultrafast Cooling Process , 2014 .

[8]  M. Militzer Thermomechanical Processed Steels , 2014 .

[9]  Huijun Li,et al.  Effect of dissolution and precipitation of Nb on the formation of acicular ferrite/bainite ferrite in low-carbon HSLA steels , 2013 .

[10]  F. Xiao,et al.  Effect of Nb Solute and NbC Precipitates on Dynamic or Static Recrystallization in Nb Steels , 2012 .

[11]  F. Xiao,et al.  Strain-induced precipitation and softening behaviors of high Nb microalloyed steels , 2012 .

[12]  F. Xiao,et al.  Quantitative research on effects of Nb on hot deformation behaviors of high-Nb microalloyed steels , 2011 .

[13]  L. Du,et al.  Effect of austenite grain size on isothermal bainite transformation in low carbon microalloyed steel , 2011 .

[14]  K. Verbeken,et al.  Recrystallization–precipitation interaction during austenite hot deformation of a Nb microalloyed steel , 2011 .

[15]  J. M. Rodriguez-Ibabe,et al.  Effect of austenite microstructure and cooling rate on transformation characteristics in a low carbon Nb–V microalloyed steel , 2011 .

[16]  S. Yue,et al.  The necessity of dynamic precipitation for the occurrence of no-recrystallization temperature in Nb-microalloyed steel , 2011 .

[17]  Xiang Wang,et al.  Nonisothermal Austenite Grain Growth Kinetics in a Microalloyed X80 Linepipe Steel , 2010 .

[18]  C. Sinclair,et al.  The comparative effectiveness of Nb solute and NbC precipitates at impeding grain-boundary motion in Nb steels , 2008 .

[19]  Ke Yang,et al.  Challenge of mechanical properties of an acicular ferrite pipeline steel , 2006 .

[20]  S. Zwaag,et al.  Analysis of γ → α transformation in a Nb micro-alloyed C–Mn steel by phase field modelling , 2006 .

[21]  Ke Yang,et al.  Effect of toughness on low cycle fatigue behavior of pipeline steels , 2005 .

[22]  Ke Yang,et al.  Acicular ferritic microstructure of a low-carbon Mn–Mo–Nb microalloyed pipeline steel , 2005 .

[23]  Xianghua Liu,et al.  Effect of microcontent Nb in solution on the strength of low carbon steels , 2004 .

[24]  P. Mei,et al.  Effect of carbonitride particles formed in austenite on the strength of microalloyed steels , 2004 .

[25]  C. M. Sellars,et al.  Modelling the kinetics of strain induced precipitation in Nb microalloyed steels , 2001 .

[26]  George Krauss,et al.  Ferritic Microstructures in Continuously Cooled Low- and Ultralow-carbon Steels , 1995 .