A virtual element generalization on polygonal meshes of the Scott-Vogelius finite element method for the 2-D Stokes problem

The Virtual Element Method (VEM) is a Galerkin approximation method that extends the Finite Element Method (FEM) to polytopal meshes. In this paper, we present a conforming formulation that generalizes the Scott-Vogelius finite element method for the numerical approximation of the Stokes problem to polygonal meshes in the framework of the virtual element method. In particular, we consider a straightforward application of the virtual element approximation space for scalar elliptic problems to the vector case and approximate the pressure variable through discontinuous polynomials. We assess the effectiveness of the numerical approximation by investigating the convergence on a manufactured solution problem and a set of representative polygonal meshes. We numerically show that this formulation is convergent with optimal convergence rates except for the lowest-order case on triangular meshes, where the method coincides with theP1 −P0 Scott-Vogelius scheme, and on square meshes, which are situations that are well-known to be unstable.

[1]  Felipe Lepe,et al.  A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges , 2021, J. Sci. Comput..

[2]  Y. Kuznetsov,et al.  New mixed finite element method on polygonal and polyhedral meshes , 2005 .

[3]  Lorenzo Mascotto,et al.  p- and hp- virtual elements for the Stokes problem , 2020, Advances in Computational Mathematics.

[4]  L. Beirao da Veiga,et al.  Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.

[5]  Stefano Berrone,et al.  Orthogonal polynomials in badly shaped polygonal elements for the Virtual Element Method , 2017 .

[6]  Shaochun Chen,et al.  The nonconforming virtual element method for plate bending problems , 2016 .

[7]  G. Manzini,et al.  Extended virtual element method for the Laplace problem with singularities and discontinuities , 2019, Computer Methods in Applied Mechanics and Engineering.

[8]  Alessandro Russo,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.

[9]  G. Burton Sobolev Spaces , 2013 .

[10]  Gianmarco Manzini,et al.  The NonConforming Virtual Element Method for the Stokes Equations , 2016, SIAM J. Numer. Anal..

[11]  Gianmarco Manzini,et al.  Conforming and nonconforming virtual element methods for elliptic problems , 2015, 1507.03543.

[12]  Paola F. Antonietti,et al.  The conforming virtual element method for polyharmonic problems , 2018, Comput. Math. Appl..

[13]  Gianmarco Manzini,et al.  The nonconforming Virtual Element Method for eigenvalue problems , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.

[14]  Lourenço Beirão da Veiga,et al.  A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..

[15]  L. Beirao da Veiga,et al.  The Stokes Complex for Virtual Elements with Application to Navier–Stokes Flows , 2018, Journal of Scientific Computing.

[16]  L. Beirao da Veiga,et al.  H(div) and H(curl)-conforming VEM , 2014, 1407.6822.

[17]  G. Vacca,et al.  The p- and hp-versions of the virtual element method for elliptic eigenvalue problems , 2018, Comput. Math. Appl..

[18]  Richard Hofer Sedimentation of Inertialess Particles in Stokes Flows , 2016, 1610.03748.

[19]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[20]  Franco Brezzi,et al.  Virtual Element Methods for plate bending problems , 2013 .

[21]  L. Beirao da Veiga,et al.  Basic principles of hp virtual elements on quasiuniform meshes , 2015, 1508.02242.

[22]  Glaucio H. Paulino,et al.  Bridging art and engineering using Escher-based virtual elements , 2015 .

[23]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[24]  Andreas Wiegmann,et al.  Specialized methods for direct numerical simulations in porous media , 2019 .

[25]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[26]  Gianmarco Manzini,et al.  Residual a posteriori error estimation for the Virtual Element Method for elliptic problems , 2015 .

[27]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[28]  Stefano Berrone,et al.  The virtual element method for discrete fracture network simulations , 2014 .

[29]  L. Beirao da Veiga,et al.  Serendipity Nodal VEM spaces , 2015, 1510.08477.

[30]  Brian J. Kirby,et al.  Microfluidic transport in microdevices for rare cell capture , 2012, Electrophoresis.

[31]  Konstantin Lipnikov,et al.  A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles , 2010, SIAM J. Sci. Comput..

[32]  Stefano Berrone,et al.  The Virtual Element Method for Underground Flow Simulations in Fractured Media , 2016 .

[33]  Gianmarco Manzini,et al.  Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..

[34]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[35]  Stefano Berrone,et al.  Towards effective flow simulations in realistic discrete fracture networks , 2016, J. Comput. Phys..

[36]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[37]  P. F. Antonietti,et al.  The fully nonconforming virtual element method for biharmonic problems , 2016, 1611.08736.

[38]  M. Shashkov,et al.  A new discretization methodology for diffusion problems on generalized polyhedral meshes , 2007 .

[39]  Gianmarco Manzini,et al.  A posteriori error estimation and adaptivity in hp virtual elements , 2018, Numerische Mathematik.

[40]  L. Beirao da Veiga,et al.  The Stokes complex for Virtual Elements in three dimensions , 2019, Mathematical Models and Methods in Applied Sciences.

[41]  M. Shashkov,et al.  CONVERGENCE OF MIMETIC FINITE DIFFERENCE METHOD FOR DIFFUSION PROBLEMS ON POLYHEDRAL MESHES WITH CURVED FACES , 2006 .

[42]  Glaucio H. Paulino,et al.  Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .

[43]  Gianmarco Manzini,et al.  Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes , 2010, SIAM J. Numer. Anal..

[44]  L. B. D. Veiga,et al.  A virtual element method with arbitrary regularity , 2014 .

[45]  Giuseppe Vacca,et al.  Virtual Elements for the Navier-Stokes Problem on Polygonal Meshes , 2017, SIAM J. Numer. Anal..

[46]  Lorenzo Mascotto,et al.  Ill‐conditioning in the virtual element method: Stabilizations and bases , 2017, 1705.10581.

[47]  Emmanuil H. Georgoulis,et al.  A posteriori error estimates for the virtual element method , 2016, Numerische Mathematik.

[48]  Gianmarco Manzini,et al.  Hourglass stabilization and the virtual element method , 2015 .

[49]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[50]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[51]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[52]  Gianmarco Manzini,et al.  The Virtual Element Method for Eigenvalue Problems with Potential Terms on Polytopic Meshes , 2018, Applications of Mathematics.

[53]  Stefano Berrone,et al.  A Posteriori Error Estimate for a PDE-Constrained Optimization Formulation for the Flow in DFNs , 2016, SIAM J. Numer. Anal..

[54]  Peter Wriggers,et al.  A virtual element method for contact , 2016 .

[55]  L. Beirao da Veiga,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .

[56]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[57]  N. Sukumar,et al.  Extended finite element method on polygonal and quadtree meshes , 2008 .

[58]  Panayot S. Vassilevski,et al.  Mixed finite element methods for incompressible flow: Stationary Stokes equations , 2010 .

[59]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[60]  Børre Bang,et al.  Application of homogenization theory related to Stokes flow in porous media , 1999 .

[61]  A. Russo,et al.  New perspectives on polygonal and polyhedral finite element methods , 2014 .

[62]  Gianmarco Manzini,et al.  Convergence Analysis of the Mimetic Finite Difference Method for Elliptic Problems , 2009, SIAM J. Numer. Anal..

[63]  J. M. Hyman,et al.  Mimetic discretizations for Maxwell equations and the equations of magnetic diffusion , 1998 .

[64]  Ilaria Perugia,et al.  A Plane Wave Virtual Element Method for the Helmholtz Problem , 2015, 1505.04965.

[65]  Stefano Berrone,et al.  A Parallel Solver for Large Scale DFN Flow Simulations , 2015, SIAM J. Sci. Comput..

[66]  Eugene Wachspress Rational Bases and Generalized Barycentrics: Applications to Finite Elements and Graphics , 2015 .

[67]  Stéphane Bordas,et al.  Virtual and smoothed finite elements: A connection and its application to polygonal/polyhedral finite element methods , 2015 .

[68]  Mikhail Shashkov,et al.  A tensor artificial viscosity using a mimetic finite difference algorithm , 2001 .

[69]  Lourenço Beirão da Veiga,et al.  Virtual element methods for parabolic problems on polygonal meshes , 2015 .

[70]  K. Lipnikov,et al.  The nonconforming virtual element method , 2014, 1405.3741.

[71]  Gianmarco Manzini,et al.  Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes , 2017, J. Comput. Phys..

[72]  G. Manzini,et al.  SUPG stabilization for the nonconforming virtual element method for advection–diffusion–reaction equations , 2018, Computer Methods in Applied Mechanics and Engineering.

[73]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[74]  Richard S. Falk,et al.  Basic principles of mixed Virtual Element Methods , 2014 .

[75]  L. Beirao da Veiga,et al.  A Virtual Element Method for elastic and inelastic problems on polytope meshes , 2015, 1503.02042.

[76]  Gianmarco Manzini,et al.  Virtual Element Methods for Elliptic Problems on Polygonal Meshes , 2017 .