暂无分享,去创建一个
[1] Felipe Lepe,et al. A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges , 2021, J. Sci. Comput..
[2] Y. Kuznetsov,et al. New mixed finite element method on polygonal and polyhedral meshes , 2005 .
[3] Lorenzo Mascotto,et al. p- and hp- virtual elements for the Stokes problem , 2020, Advances in Computational Mathematics.
[4] L. Beirao da Veiga,et al. Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.
[5] Stefano Berrone,et al. Orthogonal polynomials in badly shaped polygonal elements for the Virtual Element Method , 2017 .
[6] Shaochun Chen,et al. The nonconforming virtual element method for plate bending problems , 2016 .
[7] G. Manzini,et al. Extended virtual element method for the Laplace problem with singularities and discontinuities , 2019, Computer Methods in Applied Mechanics and Engineering.
[8] Alessandro Russo,et al. Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.
[9] G. Burton. Sobolev Spaces , 2013 .
[10] Gianmarco Manzini,et al. The NonConforming Virtual Element Method for the Stokes Equations , 2016, SIAM J. Numer. Anal..
[11] Gianmarco Manzini,et al. Conforming and nonconforming virtual element methods for elliptic problems , 2015, 1507.03543.
[12] Paola F. Antonietti,et al. The conforming virtual element method for polyharmonic problems , 2018, Comput. Math. Appl..
[13] Gianmarco Manzini,et al. The nonconforming Virtual Element Method for eigenvalue problems , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.
[14] Lourenço Beirão da Veiga,et al. A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..
[15] L. Beirao da Veiga,et al. The Stokes Complex for Virtual Elements with Application to Navier–Stokes Flows , 2018, Journal of Scientific Computing.
[16] L. Beirao da Veiga,et al. H(div) and H(curl)-conforming VEM , 2014, 1407.6822.
[17] G. Vacca,et al. The p- and hp-versions of the virtual element method for elliptic eigenvalue problems , 2018, Comput. Math. Appl..
[18] Richard Hofer. Sedimentation of Inertialess Particles in Stokes Flows , 2016, 1610.03748.
[19] P. Raviart,et al. Finite Element Approximation of the Navier-Stokes Equations , 1979 .
[20] Franco Brezzi,et al. Virtual Element Methods for plate bending problems , 2013 .
[21] L. Beirao da Veiga,et al. Basic principles of hp virtual elements on quasiuniform meshes , 2015, 1508.02242.
[22] Glaucio H. Paulino,et al. Bridging art and engineering using Escher-based virtual elements , 2015 .
[23] Lourenço Beirão da Veiga,et al. Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..
[24] Andreas Wiegmann,et al. Specialized methods for direct numerical simulations in porous media , 2019 .
[25] Franco Brezzi,et al. The Hitchhiker's Guide to the Virtual Element Method , 2014 .
[26] Gianmarco Manzini,et al. Residual a posteriori error estimation for the Virtual Element Method for elliptic problems , 2015 .
[27] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[28] Stefano Berrone,et al. The virtual element method for discrete fracture network simulations , 2014 .
[29] L. Beirao da Veiga,et al. Serendipity Nodal VEM spaces , 2015, 1510.08477.
[30] Brian J. Kirby,et al. Microfluidic transport in microdevices for rare cell capture , 2012, Electrophoresis.
[31] Konstantin Lipnikov,et al. A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles , 2010, SIAM J. Sci. Comput..
[32] Stefano Berrone,et al. The Virtual Element Method for Underground Flow Simulations in Fractured Media , 2016 .
[33] Gianmarco Manzini,et al. Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..
[34] P. Alam. ‘L’ , 2021, Composites Engineering: An A–Z Guide.
[35] Stefano Berrone,et al. Towards effective flow simulations in realistic discrete fracture networks , 2016, J. Comput. Phys..
[36] F. Brezzi,et al. Basic principles of Virtual Element Methods , 2013 .
[37] P. F. Antonietti,et al. The fully nonconforming virtual element method for biharmonic problems , 2016, 1611.08736.
[38] M. Shashkov,et al. A new discretization methodology for diffusion problems on generalized polyhedral meshes , 2007 .
[39] Gianmarco Manzini,et al. A posteriori error estimation and adaptivity in hp virtual elements , 2018, Numerische Mathematik.
[40] L. Beirao da Veiga,et al. The Stokes complex for Virtual Elements in three dimensions , 2019, Mathematical Models and Methods in Applied Sciences.
[41] M. Shashkov,et al. CONVERGENCE OF MIMETIC FINITE DIFFERENCE METHOD FOR DIFFUSION PROBLEMS ON POLYHEDRAL MESHES WITH CURVED FACES , 2006 .
[42] Glaucio H. Paulino,et al. Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .
[43] Gianmarco Manzini,et al. Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes , 2010, SIAM J. Numer. Anal..
[44] L. B. D. Veiga,et al. A virtual element method with arbitrary regularity , 2014 .
[45] Giuseppe Vacca,et al. Virtual Elements for the Navier-Stokes Problem on Polygonal Meshes , 2017, SIAM J. Numer. Anal..
[46] Lorenzo Mascotto,et al. Ill‐conditioning in the virtual element method: Stabilizations and bases , 2017, 1705.10581.
[47] Emmanuil H. Georgoulis,et al. A posteriori error estimates for the virtual element method , 2016, Numerische Mathematik.
[48] Gianmarco Manzini,et al. Hourglass stabilization and the virtual element method , 2015 .
[49] Ahmed Alsaedi,et al. Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..
[50] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[51] Gianmarco Manzini,et al. Mimetic finite difference method , 2014, J. Comput. Phys..
[52] Gianmarco Manzini,et al. The Virtual Element Method for Eigenvalue Problems with Potential Terms on Polytopic Meshes , 2018, Applications of Mathematics.
[53] Stefano Berrone,et al. A Posteriori Error Estimate for a PDE-Constrained Optimization Formulation for the Flow in DFNs , 2016, SIAM J. Numer. Anal..
[54] Peter Wriggers,et al. A virtual element method for contact , 2016 .
[55] L. Beirao da Veiga,et al. Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .
[56] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[57] N. Sukumar,et al. Extended finite element method on polygonal and quadtree meshes , 2008 .
[58] Panayot S. Vassilevski,et al. Mixed finite element methods for incompressible flow: Stationary Stokes equations , 2010 .
[59] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[60] Børre Bang,et al. Application of homogenization theory related to Stokes flow in porous media , 1999 .
[61] A. Russo,et al. New perspectives on polygonal and polyhedral finite element methods , 2014 .
[62] Gianmarco Manzini,et al. Convergence Analysis of the Mimetic Finite Difference Method for Elliptic Problems , 2009, SIAM J. Numer. Anal..
[63] J. M. Hyman,et al. Mimetic discretizations for Maxwell equations and the equations of magnetic diffusion , 1998 .
[64] Ilaria Perugia,et al. A Plane Wave Virtual Element Method for the Helmholtz Problem , 2015, 1505.04965.
[65] Stefano Berrone,et al. A Parallel Solver for Large Scale DFN Flow Simulations , 2015, SIAM J. Sci. Comput..
[66] Eugene Wachspress. Rational Bases and Generalized Barycentrics: Applications to Finite Elements and Graphics , 2015 .
[67] Stéphane Bordas,et al. Virtual and smoothed finite elements: A connection and its application to polygonal/polyhedral finite element methods , 2015 .
[68] Mikhail Shashkov,et al. A tensor artificial viscosity using a mimetic finite difference algorithm , 2001 .
[69] Lourenço Beirão da Veiga,et al. Virtual element methods for parabolic problems on polygonal meshes , 2015 .
[70] K. Lipnikov,et al. The nonconforming virtual element method , 2014, 1405.3741.
[71] Gianmarco Manzini,et al. Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes , 2017, J. Comput. Phys..
[72] G. Manzini,et al. SUPG stabilization for the nonconforming virtual element method for advection–diffusion–reaction equations , 2018, Computer Methods in Applied Mechanics and Engineering.
[73] N. Sukumar,et al. Conforming polygonal finite elements , 2004 .
[74] Richard S. Falk,et al. Basic principles of mixed Virtual Element Methods , 2014 .
[75] L. Beirao da Veiga,et al. A Virtual Element Method for elastic and inelastic problems on polytope meshes , 2015, 1503.02042.
[76] Gianmarco Manzini,et al. Virtual Element Methods for Elliptic Problems on Polygonal Meshes , 2017 .