Dynamics and Analysis of Alignment Models of Collective Behavior

1. Preface 2 2. Emergent phenomena of collective behavior. 4 3. Agent-based alignment systems 6 3.1. Types of communication and collective outcomes 6 3.2. Momentum, Energy, and Maximum Principle 7 3.3. Connectivity and spectral method 8 3.4. Alignment with heavy tail communication 10 3.5. Stability 12 3.6. Singular kernels and the issue of collisions 14 3.7. Degenerate communication. Corrector Method 15 3.8. Multi-flocks. Clusters. Multi-species 19 3.9. Notes and References 22 4. Forced systems 24 4.1. 3Zones model. Small crowd flocking 24 4.2. External confinement. Hypocoercivity 26 4.3. 2Zone model: attraction + alignment 29 4.4. Dynamics under self-propulsion and Rayleigh friction 34 4.5. Notes and References 36 5. Kinetic models 37 5.1. BBGKY hierarchy: formal derivation 37 5.2. Weak formulation and basic principles of kinetic dynamics 38 5.3. Kinetic maximum principle and flocking 40 5.4. Stability. Kantorovich-Rubinstein metric. Contractivity 41 5.5. Mean-field limit 43 5.6. Notes and References 45 6. Macroscopic description. Hydrodynamic limit. 46 6.1. Multi-scale model and its justification 47 6.2. Hydrodynamic limit. Kinetic relative entropy 50 6.3. Notes and References 55 7. Euler Alignment System 57 7.1. Basic properties. Energy law 57 7.2. Hydrodynamic flocking and stability 58 7.3. Spectral method. Hydrodynamic connectivity 60 7.4. Topological models. Adaptive diffusion 62 7.5. Notes and References 67 8. Local well-posedness and continuation criteria 68 8.1. Smooth models 68 8.2. Singular models 72

[1]  A. Figalli,et al.  A rigorous derivation from the kinetic Cucker–Smale model to the pressureless Euler system with nonlocal alignment , 2017, Analysis & PDE.

[2]  T. Leslie Weak and strong solutions to the forced fractional Euler alignment system , 2018, Nonlinearity.

[3]  P. Mucha,et al.  Singular Cucker–Smale Dynamics , 2018, Active Particles, Volume 2.

[4]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[5]  A. Czirók,et al.  Collective Motion , 1999, physics/9902023.

[6]  G. Parisi,et al.  Empirical investigation of starling flocks: a benchmark study in collective animal behaviour , 2008, Animal Behaviour.

[7]  Daniel Lear,et al.  Existence and stability of unidirectional flocks in hydrodynamic Euler alignment systems , 2019, Analysis & PDE.

[8]  R. Shvydkoy Global Existence and Stability of Nearly Aligned Flocks , 2018, Journal of Dynamics and Differential Equations.

[9]  Vlad Vicol,et al.  Nonlinear maximum principles for dissipative linear nonlocal operators and applications , 2011, 1110.0179.

[10]  David N. Reynolds,et al.  Local well-posedness of the topological Euler alignment models of collective behavior , 2019, Nonlinearity.

[11]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[12]  G. Parisi,et al.  FROM EMPIRICAL DATA TO INTER-INDIVIDUAL INTERACTIONS: UNVEILING THE RULES OF COLLECTIVE ANIMAL BEHAVIOR , 2010 .

[13]  Pierre Degond,et al.  Topological Interactions in a Boltzmann-Type Framework , 2015, Journal of Statistical Physics.

[14]  Jan Haskovec,et al.  Flocking dynamics and mean-field limit in the Cucker–Smale-type model with topological interactions , 2013, 1301.0925.

[15]  H. Jin Kim,et al.  Cucker-Smale Flocking With Inter-Particle Bonding Forces , 2010, IEEE Transactions on Automatic Control.

[16]  Piotr B. Mucha,et al.  The Cucker–Smale Equation: Singular Communication Weight, Measure-Valued Solutions and Weak-Atomic Uniqueness , 2015, 1509.07673.

[17]  T. Leslie On the Lagrangian Trajectories for the One-Dimensional Euler Alignment Model without Vacuum Velocity , 2019, Comptes Rendus. Mathématique.

[18]  I. Aoki A simulation study on the schooling mechanism in fish. , 1982 .

[19]  Jeongho Kim,et al.  Cucker-Smale model with a bonding force and a singular interaction kernel , 2018, 1805.01994.

[20]  A. Córdoba,et al.  Finite time singularities in a 1D model of the quasi-geostrophic equation , 2005 .

[21]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[22]  Sébastien Motsch,et al.  Heterophilious Dynamics Enhances Consensus , 2013, SIAM Rev..

[23]  Dante Kalise,et al.  A collisionless singular Cucker-Smale model with decentralized formation control , 2018, SIAM J. Appl. Dyn. Syst..

[24]  Seung-Yeal Ha,et al.  A hydrodynamic model for the interaction of Cucker–Smale particles and incompressible fluid , 2014 .

[25]  E. Tadmor,et al.  Anticipation Breeds Alignment , 2019, Archive for Rational Mechanics and Analysis.

[26]  Benedetto Piccoli,et al.  Control to Flocking of the Kinetic Cucker-Smale Model , 2014, SIAM J. Math. Anal..

[27]  Juan Soler,et al.  Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker–Smale models , 2016, 1611.00743.

[28]  Giorgio Parisi,et al.  The STARFLAG handbook on collective animal behaviour: 1. Empirical methods , 2008, Animal Behaviour.

[29]  M. Degroot Reaching a Consensus , 1974 .

[30]  L. Székelyhidi,et al.  Non-uniqueness and h-Principle for Hölder-Continuous Weak Solutions of the Euler Equations , 2016, 1603.09714.

[31]  Young-Pil Choi,et al.  Sharp conditions to avoid collisions in singular Cucker-Smale interactions , 2016, 1609.03447.

[32]  Changhui Tan,et al.  Global Regularity for 1D Eulerian Dynamics with Singular Interaction Forces , 2017, SIAM J. Math. Anal..

[33]  Ioannis Markou Collision-avoiding in the singular Cucker-Smale model with nonlinear velocity couplings , 2018, 1807.00485.

[34]  Massimo Fornasier,et al.  Sparse Stabilization and Control of Alignment Models , 2012, 1210.5739.

[35]  Eitan Tadmor,et al.  Eulerian dynamics with a commutator forcing III. Fractional diffusion of order 0 , 2017, Physica D: Nonlinear Phenomena.

[36]  Felipe Cucker,et al.  A General Collision-Avoiding Flocking Framework , 2011, IEEE Transactions on Automatic Control.

[37]  L. Ryzhik,et al.  Global well-posedness for the Euler alignment system with mildly singular interactions , 2019, Nonlinearity.

[38]  A. Volberg,et al.  Global well-posedness for the critical 2D dissipative quasi-geostrophic equation , 2007 .

[39]  Moon-Jin Kang,et al.  Asymptotic analysis of Vlasov-type equations under strong local alignment regime , 2014, 1412.3119.

[40]  Eitan Tadmor,et al.  Global regularity of two-dimensional flocking hydrodynamics , 2017, 1702.07535.

[41]  Eitan Tadmor,et al.  Multi-flocks: emergent dynamics in systems with multi-scale collective behavior , 2020, 2003.04489.

[42]  Seung-Yeal Ha,et al.  Complete Cluster Predictability of the Cucker–Smale Flocking Model on the Real Line , 2018, Archive for Rational Mechanics and Analysis.

[43]  조준학,et al.  Growth of human bronchial epithelial cells at an air-liquid interface alters the response to particle exposure , 2013, Particle and Fibre Toxicology.

[44]  F. Poupaud Global smooth solutions of some quasi-linear hyperbolic systems with large data , 1999 .

[45]  Eitan Tadmor,et al.  A game of alignment:collective behavior of multi-species. , 2019 .

[46]  E. Tadmor,et al.  Flocking With Short-Range Interactions , 2018, Journal of Statistical Physics.

[47]  Reza Olfati-Saber,et al.  Flocking for multi-agent dynamic systems: algorithms and theory , 2006, IEEE Transactions on Automatic Control.

[48]  S. Smale,et al.  On the mathematics of emergence , 2007 .

[49]  G. Parisi,et al.  Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study , 2007, Proceedings of the National Academy of Sciences.

[50]  Neha Bhooshan,et al.  The Simulation of the Movement of Fish Schools , 2001 .

[51]  G. Parisi,et al.  The STARFLAG handbook on collective animal behaviour: Part II, three-dimensional analysis , 2008, 0802.1674.

[52]  Young-Pil Choi,et al.  The global Cauchy problem for compressible Euler equations with a nonlocal dissipation , 2018, Mathematical Models and Methods in Applied Sciences.

[53]  Seung-Yeal Ha,et al.  Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives , 2019, Mathematical Models and Methods in Applied Sciences.

[54]  Yoshiki Kuramoto,et al.  Self-entrainment of a population of coupled non-linear oscillators , 1975 .

[55]  L. Caffarelli,et al.  Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation , 2006, math/0608447.

[56]  L. Silvestre Holder estimates for advection fractional-diffusion equations , 2010, 1009.5723.

[57]  E. Tadmor,et al.  From particle to kinetic and hydrodynamic descriptions of flocking , 2008, 0806.2182.

[58]  Yilun Shang,et al.  Consensus reaching in swarms ruled by a hybrid metric-topological distance , 2014, The European Physical Journal B.

[59]  Eitan Tadmor,et al.  Critical thresholds in flocking hydrodynamics with non-local alignment , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[60]  David N. Reynolds,et al.  Grassmannian reduction of Cucker-Smale systems and application to opinion dynamics , 2020 .

[61]  E. Tadmor,et al.  Eulerian dynamics with a commutator forcing II: Flocking , 2017, 1701.07710.

[62]  D. Córdoba,et al.  Global existence, singularities and ill-posedness for a nonlocal flux , 2008 .

[63]  Antoine Mellet,et al.  Existence of Weak Solutions to Kinetic Flocking Models , 2012, SIAM J. Math. Anal..

[64]  Eitan Tadmor,et al.  Eulerian dynamics with a commutator forcing , 2016, 1612.04297.

[65]  Seung-Yeal Ha,et al.  Emergent Dynamics for the Hydrodynamic Cucker-Smale System in a Moving Domain , 2015, SIAM J. Math. Anal..

[66]  Yukio-Pegio Gunji,et al.  Emergence of the scale-invariant proportion in a flock from the metric-topological interaction , 2014, Biosyst..

[67]  Changhui Tan Singularity formation for a fluid mechanics model with nonlocal velocity , 2017, Communications in Mathematical Sciences.

[68]  Jan Peszek,et al.  Discrete Cucker-Smale Flocking Model with a Weakly Singular Weight , 2014, SIAM J. Math. Anal..

[69]  Massimo Fornasier,et al.  Un)conditional consensus emergence under perturbed and decentralized feedback controls , 2015 .

[70]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[71]  G. Parisi,et al.  Scale-free correlations in starling flocks , 2009, Proceedings of the National Academy of Sciences.

[72]  R. Shvydkoy,et al.  On the structure of limiting flocks in hydrodynamic Euler Alignment models , 2018, Mathematical Models and Methods in Applied Sciences.

[73]  Giorgio Parisi,et al.  The STARFLAG handbook on collective animal behaviour: 2. Three-dimensional analysis , 2008, Animal Behaviour.

[74]  C. Villani Topics in Optimal Transportation , 2003 .

[75]  M. Grassin Existence of Global Smooth Solutions to Euler Equations for an Isentropic Perfect Gas , 1999 .

[76]  R. Danchin,et al.  Regular solutions to the fractional Euler alignment system in the Besov spaces framework , 2018, Mathematical Models and Methods in Applied Sciences.

[77]  Zhiping Mao,et al.  Nonlocal Flocking Dynamics: Learning the Fractional Order of PDEs from Particle Simulations , 2018, Communications on Applied Mathematics and Computation.

[78]  Singularity formation for the fractional Euler-alignment system in 1D , 2019, 1911.08974.

[79]  Eitan Tadmor,et al.  A New Model for Self-organized Dynamics and Its Flocking Behavior , 2011, 1102.5575.

[80]  Massimo Fornasier,et al.  Particle, kinetic, and hydrodynamic models of swarming , 2010 .

[81]  Trygve K. Karper,et al.  On Strong Local Alignment in the Kinetic Cucker-Smale Model , 2012, 1202.4344.

[82]  E. Tadmor,et al.  Topological models for emergent dynamics with short-range interactions , 2018, 1806.01371.

[83]  Jos'e A. Carrillo,et al.  A Review on Attractive–Repulsive Hydrodynamics for Consensus in Collective Behavior , 2016, 1605.00232.

[84]  A. Bertozzi,et al.  State Transitions and the Continuum Limit for a 2D Interacting, Self-Propelled Particle System , 2006, nlin/0606031.

[85]  P. Degond,et al.  Kinetic Models for Topological Nearest-Neighbor Interactions , 2017, Journal of Statistical Physics.

[86]  Lenya Ryzhik,et al.  Global Regularity for the Fractional Euler Alignment System , 2017, 1701.05155.

[87]  J. Vázquez,et al.  Nonlinear Porous Medium Flow with Fractional Potential Pressure , 2010, 1001.0410.

[88]  Jan Peszek,et al.  Existence of piecewise weak solutions of a discrete Cucker-Smale's flocking model with a singular communication weight , 2013, 1302.4224.

[89]  Felipe Cucker,et al.  Avoiding Collisions in Flocks , 2010, IEEE Transactions on Automatic Control.

[90]  Seung-Yeal Ha,et al.  Uniform stability of the Cucker-Smale model and its application to the Mean-Field limit , 2018 .

[91]  Seung-Yeal Ha,et al.  A simple proof of the Cucker-Smale flocking dynamics and mean-field limit , 2009 .

[92]  Alexandre Favre,et al.  Turbulence: Space‐time statistical properties and behavior in supersonic flows , 1983 .

[93]  Philip Isett,et al.  A Proof of Onsager's Conjecture , 2016, 1608.08301.

[94]  Roman Shvydkoy,et al.  Entropy Hierarchies for Equations of Compressible Fluids and Self-Organized Dynamics , 2019, SIAM J. Math. Anal..

[95]  Pedro Elosegui,et al.  Extension of the Cucker-Smale Control Law to Space Flight Formations , 2009 .

[96]  Eitan Tadmor,et al.  Flocking Hydrodynamics with External Potentials , 2019, 1901.07099.

[97]  Jos'e A. Carrillo,et al.  An analytical framework for a consensus-based global optimization method , 2016, 1602.00220.

[98]  Antoine Mellet,et al.  Hydrodynamic limit of the kinetic Cucker–Smale flocking model , 2012, 1205.6831.

[99]  H. Dietert,et al.  On Cucker–Smale dynamical systems with degenerate communication , 2019 .

[100]  I. Couzin,et al.  Collective memory and spatial sorting in animal groups. , 2002, Journal of theoretical biology.

[101]  Seung-Yeal Ha,et al.  Emergent Dynamics of a Thermodynamically Consistent Particle Model , 2017 .

[102]  Jesús Rosado,et al.  Asymptotic Flocking Dynamics for the Kinetic Cucker-Smale Model , 2010, SIAM J. Math. Anal..

[103]  Felipe Cucker,et al.  Emergent Behavior in Flocks , 2007, IEEE Transactions on Automatic Control.

[104]  Seung-Yeal Ha,et al.  Asymptotic dynamics for the Cucker–Smale-type model with the Rayleigh friction , 2010 .

[105]  Eitan Tadmor,et al.  Critical thresholds in 1D Euler equations with nonlocal forces , 2014, 1411.1791.