Dynamic Behavior of Boiling Water Reactors

A study of the basic processes involved in boil ing wa ter nuclear reactor dynamics is presented . The main emphasis of this research has been placed on the phys ical interpretation of these pro­ cesses . It is shown that this type of reac tors have two regimes of operation : linear , during normal oper at ion , and nonl inear , if they become unstable due to the thermohydraul ic feedback . Both of these regimes are stud ied using low-order physical mod el s . The main resul t ob tained from the linear study is the pole­ zero configurat ion of the reactivi ty-to-power transfer function . It is determined that three zeros and four poles are need ed to properly represent thi s transfer func tion . Phys ical processes are identif ied with these trans fer function features . Based on the unders tand in � of the se proces ses , an automated algori thm to est imate boil ing water reactor stability from neut ron no ise measurement s is developed and implemented as a computer cod e . The causative mechani sm lead ing to the appearance of the limit cycle in bo il ing water reac tors is identif ied from the nonl inear study . The relationship be tween the different process variables d uring limit cycle oscillations is stud ied . It is shown that these o scillations could reach large ampli tudes . The stab ility of the limi t cycle is al so stud ied . It is shown that the ampli tude of the limti cycle can become unstable and produce period-doubl ing pi tchfork bi furcations which scale accord ing

[1]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1971 .

[2]  G. A. Baker Essentials of Padé approximants , 1975 .

[3]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[4]  S. A. Sandoz,et al.  Vermont Yankee stability tests during cycle 8 , 1983 .

[5]  C. A. Stapleton,et al.  Random Noise Techniques in Nuclear Reactor Systems , 1975, IEEE Transactions on Nuclear Science.

[6]  Otto J. M. Smith,et al.  Feedback control systems , 1958 .

[7]  T. Geisel,et al.  Universal Fine Structure of the Chaotic Region in Period-Doubling Systems , 1981 .

[8]  R. Jensen,et al.  Calculation of the Statistical Properties of Strange Attractors , 1981 .

[9]  S. Levy,et al.  HYDRAULIC INSTABILITY IN A NATURAL CIRCULATION LOOP WITH NET STEAM GENERATION AT 1000 PSIA , 1959 .

[10]  S Wick Robert Power Reactor Noise , 1982 .

[11]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[12]  N. H. Larsen Core design and operating data for Cycles 1 and 2 of Peach Bottom 2 , 1978 .

[13]  O. Yokomizo Time-Domain Analysis of BWR Core Stability , 1983 .

[14]  E. Ott Strange attractors and chaotic motions of dynamical systems , 1981 .

[15]  Daniel D. Joseph,et al.  Stability of fluid motions , 1976 .

[16]  Masao Kitano,et al.  Chaos and Period-Doubling Bifurcations in a Simple Acoustic System , 1983 .

[17]  J. A. Fleck THE INFLUENCE OF PRESSURE ON BOILING WATER REACTOR DYNAMIC BEHAVIOR AT ATMOSPHERIC PRESSURE , 1961 .

[18]  B. A. Huberman,et al.  Power spectra of strange attractors , 1981 .

[19]  D. S. Trent,et al.  COBRA-IV: the model and the method , 1977 .

[20]  C HindmarshAlan LSODE and LSODI, two new initial value ordinary differential equation solvers , 1980 .

[21]  S. Andersson,et al.  BWR stability testing: reaching the limit-cycle threshold at natural circulation , 1981 .

[22]  Thomas J. Higgins,et al.  Random Processes in Nuclear Reactors , 1975, IEEE Transactions on Nuclear Science.

[23]  H. Motoda,et al.  Analysis of BWR core stability with space-dependent neutron feedback , 1983 .

[24]  J. Yorke,et al.  CHAOTIC ATTRACTORS IN CRISIS , 1982 .

[25]  A. TUSTIN,et al.  Automatic Control Systems , 1950, Nature.

[26]  R. O. Niemi,et al.  Low-flow stability tests at Peach Bottom Atomic Power Station unit 2 during cycle 3 , 1981 .

[27]  D. G. Dight,et al.  HYDRODYNAMIC STABILITY OF A BOILING CHANNEL. PART 2 , 1962 .

[28]  A. Hindmarsh LSODE and LSODI, two new initial value ordinary differential equation solvers , 1980, SGNM.

[29]  Jose March-Leuba,et al.  Comparison of BWR-stability measurements with calculations using the code LAPUR-IV , 1983 .

[30]  Mitchell J. Feigenbaum,et al.  The transition to aperiodic behavior in turbulent systems , 1980 .

[31]  Helge Christensen,et al.  Power-to-void transfer functions , 1961 .

[32]  R. T. Lahey,et al.  A state variable analysis of boiling water nuclear reactor stability and response to various external perturbations , 1983 .

[33]  B. Upadhyaya,et al.  Stability Monitoring of Boiling Water Reactors by Time Series Analysis of Neutron Noise , 1981 .

[34]  Theo Geisel,et al.  Onset of Diffusion and Universal Scaling in Chaotic Systems , 1982 .

[35]  P. Linsay Period Doubling and Chaotic Behavior in a Driven Anharmonic Oscillator , 1981 .

[36]  F. J. Moody,et al.  The thermal hydraulics of a boiling water nuclear reactor , 1977 .

[37]  Diego L. González,et al.  Chaos in a Nonlinear Driven Oscillator with Exact Solution , 1983 .

[38]  Jose March-Leuba,et al.  Universality and aperiodic behavior of nuclear reactors , 1984 .

[39]  R. Holt,et al.  RAMONA II: A FORTRAN CODE FOR TRANSIENT ANALYSIS OF BOILING WATER REACTORS. , 1972 .

[40]  G. I. Bell,et al.  Nuclear Reactor Theory , 1952 .

[41]  Jose Antonio Coarasa Perez,et al.  Evidence for universal chaotic behavior of a driven nonlinear oscillator , 1982 .

[42]  F. Difilippo Neutron Wave Propagation in Heterogeneous Media and the Interpretation of Neutron Noise in Boiling Water Reactors , 1982 .

[43]  S. Tsunoyama,et al.  Vermont yankee stability simulation with a three-dimensional transient model , 1984 .