Memory-based scheduling for a parallel multifrontal solver

Summary form only given. The memory usage of sparse direct solvers can be the bottleneck to solve large-scale problems. We describe dynamic scheduling strategies that aim at reducing the memory usage of a parallel direct solver. Combined to static modifications of the tasks dependency graph, experiments show that such techniques have a good potential to improve the memory usage of a parallel multifrontal solver, MUMPS.

[1]  Gil Utard,et al.  Adaptive paging for a multifrontal solver , 2004, ICS '04.

[2]  Joseph W. H. Liu,et al.  On the storage requirement in the out-of-core multifrontal method for sparse factorization , 1986, TOMS.

[3]  Iain S. Duff,et al.  The Rutherford-Boeing sparse matrix collection , 1997 .

[4]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[5]  Gil Utard,et al.  On the memory usage of a parallel multifrontal solver , 2003, Proceedings International Parallel and Distributed Processing Symposium.

[6]  Jürgen Schulze Towards a Tighter Coupling of Bottom-Up and Top-Down Sparse Matrix Ordering Methods , 2001 .

[7]  Al Geist,et al.  Task scheduling for parallel sparse Cholesky factorization , 1990, International Journal of Parallel Programming.

[8]  James Demmel,et al.  ScaLAPACK: A Portable Linear Algebra Library for Distributed Memory Computers - Design Issues and Performance , 1995, PARA.

[9]  Gil Utard,et al.  Impact of reordering on the memory of a multifrontal solver , 2003, Parallel Comput..

[10]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[11]  Robert Schreiber,et al.  Efficient Methods for Out-of-Core Sparse Cholesky Factorization , 1999, SIAM J. Sci. Comput..

[12]  Patrick Amestoy,et al.  Memory Management Issues in Sparse Multifrontal Methods On Multiprocessors , 1993, Int. J. High Perform. Comput. Appl..

[13]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[14]  Iain S. Duff,et al.  The Multifrontal Solution of Unsymmetric Sets of Linear Equations , 1984 .

[15]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..