Design and fabrication of microfluidic valves using poly(N-isopropylacrylamide)

[1]  H. Stone,et al.  Formation of dispersions using “flow focusing” in microchannels , 2003 .

[2]  D. Klee,et al.  Development of a temperature sensitive drug release system for polymeric implant devices. , 2003, Biomaterials.

[3]  T. Xu,et al.  Controlled release of ionic drug through the positively charged temperature-responsive membranes , 2006 .

[4]  H. G. Schild Poly(N-isopropylacrylamide): experiment, theory and application , 1992 .

[5]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.

[6]  G. Whitesides,et al.  Soft lithographic methods for nano-fabrication , 1997 .

[7]  M. Shibayama,et al.  Simple Scaling Rules on Swollen and Shrunken Polymer Gels , 1997 .

[8]  W. Deen Analysis Of Transport Phenomena , 1998 .

[9]  Teruo Okano,et al.  Temperature dependence of swelling of crosslinked poly(N,N′-alkyl substituted acrylamides) in water , 1990 .

[10]  Lin Gui,et al.  Ice valve for a mini/micro flow channel , 2004 .

[11]  Toyoichi Tanaka,et al.  Volume‐phase transitions of ionized N‐isopropylacrylamide gels , 1987 .

[12]  Dhananjay Dendukuri,et al.  Continuous-flow lithography for high-throughput microparticle synthesis , 2006, Nature materials.

[13]  You Qiang,et al.  Iron/iron oxide core-shell nanoclusters for biomedical applications , 2006 .

[14]  M. Einarson Controlled-release microchip , 1999, Nature Biotechnology.

[15]  P. Benjamin,et al.  The adhesion of evaporated metal films on glass , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[16]  Robert Langer,et al.  Advances in Biomaterials, Drug Delivery, and Bionanotechnology , 2003 .

[17]  Ashutosh Chilkoti,et al.  Targeted drug delivery by thermally responsive polymers. , 2002, Advanced drug delivery reviews.

[18]  A. K. Agarwal,et al.  Adaptive liquid microlenses activated by stimuli-responsive hydrogels , 2006, Nature.

[19]  D. Beebe,et al.  Controlled microfluidic interfaces , 2005, Nature.

[20]  Robin H. Liu,et al.  Functional hydrogel structures for autonomous flow control inside microfluidic channels , 2000, Nature.

[21]  G. Truskey,et al.  Transport phenomena in biological systems , 2004 .

[22]  Dhananjay Dendukuri,et al.  Stop-flow lithography in a microfluidic device. , 2007, Lab on a chip.

[23]  K. Horie,et al.  Volume phase transition of polymer gel in water and heavy water , 1998 .

[24]  K. Dawson,et al.  Poly(N-isopropylacrylamide) co-polymer films as potential vehicles for delivery of an antimitotic agent to vascular smooth muscle cells. , 2003, Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology.

[25]  A. Nakao,et al.  Preparation and characterization of temperature-responsive magnetite nanoparticles conjugated with N-isopropylacrylamide-based functional copolymer , 2006 .

[26]  Yu-Ling Cheng,et al.  In-Situ Thermoreversible Gelation of Block and Star Copolymers of Poly(ethylene glycol) and Poly(N-isopropylacrylamide) of Varying Architectures , 2001 .

[27]  G. Whitesides,et al.  Components for integrated poly(dimethylsiloxane) microfluidic systems , 2002, Electrophoresis.

[28]  H. Tilmans Equivalent circuit representation of electromechanical transducers: II. Distributed-parameter systems , 1997 .

[29]  D. Beebe,et al.  Flow control with hydrogels. , 2004, Advanced drug delivery reviews.

[30]  Kristen L. Helton,et al.  Microfluidic Overview of Global Health Issues Microfluidic Diagnostic Technologies for Global Public Health , 2006 .

[31]  J. Prausnitz,et al.  Thermodynamics of aqueous systems containing hydrophilic polymers or gels , 1989 .

[32]  M. Plötner,et al.  Photopatterning of thermally sensitive hydrogels useful for microactuators , 1999 .

[33]  Nam P. Suh,et al.  Axiomatic Design: Advances and Applications , 2001 .

[34]  Toyoichi Tanaka,et al.  Patterns in shrinking gels , 1992, Nature.

[35]  Werner Karl Schomburg,et al.  Magnetically driven micro ball valves fabricated by multilayer adhesive film bonding , 2003 .

[36]  Norihiro Kato,et al.  Magnetically Driven Chemomechanical Device with Poly(N-isopropylacrylamide) Hydrogel Containing γ-Fe2O3 , 1997 .

[37]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[38]  H. Kubota,et al.  Photopolymerization synthesis of poly(N‐isopropylacrylamide) hydrogels , 1997 .

[39]  Takehiko Kitamori,et al.  Tuning microchannel wettability and fabrication of multiple-step Laplace valves. , 2007, Lab on a chip.

[40]  Catherine C. Berry,et al.  Functionalisation of magnetic nanoparticles for applications in biomedicine , 2003 .

[41]  A. Ravve,et al.  Principles of Polymer Chemistry , 1995 .

[42]  K. Dill,et al.  Molecular driving forces , 2002 .

[43]  R. E. Rosensweig,et al.  Heating magnetic fluid with alternating magnetic field , 2002 .

[44]  P. R. Pinnock,et al.  The mechanical properties of solid polymers , 1966 .

[45]  S. Sershen,et al.  Implantable, polymeric systems for modulated drug delivery. , 2002, Advanced drug delivery reviews.

[46]  K. Otake,et al.  Thermal analysis of the volume phase transition with N-isopropylacrylamide gels , 1990 .

[47]  Hua Li,et al.  Multiphysics modelling of volume phase transition of ionic hydrogels responsive to thermal stimulus. , 2005, Macromolecular bioscience.

[48]  K. Otake,et al.  A new model for the thermally induced volume phase transition of gels , 1989 .

[49]  Christian Decker,et al.  Kinetic approach of oxygen inhibition in ultraviolet- and laser-induced polymerizations , 1985 .

[50]  Jan Feijen,et al.  Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers , 1993 .

[51]  A Manz,et al.  Chemical amplification: continuous-flow PCR on a chip. , 1998, Science.

[52]  Toru Torii,et al.  Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[53]  P. Carr,et al.  Accuracy of empirical correlations for estimating diffusion coefficients in aqueous organic mixtures. , 1997, Analytical chemistry.

[54]  Nesbitt W. Hagood,et al.  Fabrication of a high frequency piezoelectric microvalve , 2004 .

[55]  Dongshin Kim,et al.  Hydrogel-based reconfigurable components for microfluidic devices. , 2007, Lab on a chip.

[56]  Toyoichi Tanaka,et al.  Volume phase transition in a nonionic gel , 1984 .

[57]  G. Whitesides,et al.  Generation of Gradients Having Complex Shapes Using Microfluidic Networks , 2001 .

[58]  Harri eACT ilmansy Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems , 1996 .

[59]  P. C. Fannin,et al.  On the calculation of the Neel relaxation time in uniaxial single-domain ferromagnetic particles , 1994 .

[60]  S. Gehrke Synthesis, equilibrium swelling, kinetics, permeability and applications of environmentally responsive gels , 1993 .

[61]  S. Quake,et al.  Dynamic pattern formation in a vesicle-generating microfluidic device. , 2001, Physical review letters.

[62]  A. Khademhosseini,et al.  Microscale technologies for tissue engineering and biology. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[63]  M. McHugh,et al.  Pressure-dependent phase transitions in hydrogels , 1990 .

[64]  A. K. Agarwal,et al.  Integration of polymer and metal microstructures using liquid-phase photopolymerization , 2006 .

[65]  D. J. Harrison,et al.  Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. Capillary electrophoresis on a chip , 1992 .

[66]  R. Ramanujan,et al.  Magnetic and hydrogel composite materials for hyperthermia applications , 2004, Journal of materials science. Materials in medicine.

[67]  H. Ringsdorf,et al.  Fluorescence studies of hydrophobically modified poly(N-isopropylacrylamides) , 1991 .

[68]  M. Dewhirst,et al.  The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. , 2001, Advanced drug delivery reviews.

[69]  D. Figeys,et al.  Lab-on-a-chip: a revolution in biological and medical sciences , 2000, Analytical chemistry.

[70]  Liang Dong,et al.  Autonomous microfluidics with stimuli-responsive hydrogels. , 2007, Soft matter.

[71]  A. Khademhosseini,et al.  Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology , 2006 .

[72]  K. Hamad-Schifferli,et al.  Selective Heating of Multiple Nanoparticles , 2005 .

[73]  D. Chandler,et al.  Introduction To Modern Statistical Mechanics , 1987 .

[74]  Shu Yang,et al.  Self-Actuated, Thermo-Responsive Hydrogel Valves for Lab on a Chip , 2005, Biomedical microdevices.

[75]  R. E. Rosensweig,et al.  Magnetic field induced rotations in ferrofluids , 1990, International Conference on Magnetics.

[76]  Yoon‐Kyoung Cho,et al.  Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices. , 2007, Lab on a chip.

[77]  M. Shikida,et al.  Electrostatically driven gas valve with high conductance , 1994 .