Multiobjective optimization by decomposition with Pareto-adaptive weight vectors

MOEA/D is a recently proposed methodology of Multiobjective Evolution Algorithms that decomposes multiobjective problems into a number of scalar subproblems and optimizes them simultaneously. However, classical MOEA/D uses same weight vectors for different shapes of Pareto front. We propose a novel method called Pareto-adaptive weight vectors (paλ) to automatically adjust the weight vectors by the geometrical characteristics of Pareto front. Evaluation on different multiobjective problems confirms that the new algorithm obtains higher hypervolume, better convergence and more evenly distributed solutions than classical MOEA/D and NSGA-II.

[1]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[2]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[3]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[4]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[5]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[6]  C. A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Computational Intelligence Magazine.

[7]  Kevin Kok Wai Wong,et al.  Classification of adaptive memetic algorithms: a comparative study , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[8]  Carlos A. Coello Coello,et al.  Pareto-adaptive -dominance , 2007, Evolutionary Computation.

[9]  Enrique Alba,et al.  SMPSO: A new PSO-based metaheuristic for multi-objective optimization , 2009, 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making(MCDM).

[10]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[11]  Bernhard Sendhoff,et al.  Generalizing Surrogate-Assisted Evolutionary Computation , 2010, IEEE Transactions on Evolutionary Computation.

[12]  Yew-Soon Ong,et al.  Memetic Computation—Past, Present & Future [Research Frontier] , 2010, IEEE Computational Intelligence Magazine.

[13]  Enrique Alba,et al.  The jMetal framework for multi-objective optimization: Design and architecture , 2010, IEEE Congress on Evolutionary Computation.