On the reliability of powder diffraction Line Profile Analysis of plastically deformed nanocrystalline systems

An iron-molybdenum alloy powder was extensively deformed by high energy milling, so to refine the bcc iron domain size to nanometer scale (~10 nm) and introduce a strong inhomogeneous strain. Both features contribute to comparable degree to the diffraction peak profile broadening, so that size and strain contributions can be easily separated by exploiting their different dependence on the diffraction angle. To assess the reliability of Line Profile Analysis, results were compared with evidence from other techniques, including scanning and transmission electron microscopy and X-ray small angle scattering. Results confirm the extent of the size broadening effect, whereas molecular dynamics simulations provide insight into the origin of the local atomic, inhomogeneous strain, pointing out the role of dislocations, domain boundaries and interactions among crystalline domains.

[1]  Andrzej Litewka Advanced Materials and Structures for Extreme Operating Conditions , 2008 .

[2]  Toshio Suzuki,et al.  Plastic anisotropy in b.c.c. transition metals , 1997 .

[3]  J. Cohen,et al.  Diff raction f rom Materials , 2006 .

[4]  R. Guinebretière X-ray Diffraction by Polycrystalline Materials: Guinebretière/X-ray , 2010 .

[5]  J. Bonevich,et al.  Crystalline domain size and faulting in the new NIST SRM 1979 zinc oxide , 2013, Powder Diffraction.

[6]  Toward a reference material for line profile analysis , 2014, Powder Diffraction.

[7]  Grain size distribution of nanocrystalline systems , 2005, Powder Diffraction.

[8]  E. N. Maslen X-ray absorption , 2006 .

[9]  P. Scardi,et al.  Dislocation Effects on the Diffraction Line Profiles from Nanocrystalline Domains , 2016, Metallurgical and Materials Transactions A.

[10]  H. Amenitsch,et al.  First performance assessment of the small-angle X-ray scattering beamline at ELETTRA. , 1998, Journal of synchrotron radiation.

[11]  P. Scardi,et al.  Diffraction line profiles from polydisperse crystalline systems. , 2001, Acta crystallographica. Section A, Foundations of crystallography.

[12]  P. Scardi,et al.  Annealing Behavior of a Nanostructured Fe1.5Mo Alloy , 2012, Metallurgical and Materials Transactions A.

[13]  E. J. Mittemeijer,et al.  Diffraction analysis of the microstructure of materials , 2004 .

[14]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[15]  Michael E. Fitzpatrick,et al.  Analysis of Residual Stress by Diffraction using Neutron and Synchrotron Radiation , 2003 .

[16]  R. Snyder,et al.  Defect and Microstructure Analysis by Diffraction , 2000 .

[17]  N. Ashcroft,et al.  Vegard's law. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[18]  K. T. Ramesh,et al.  Nanomaterials: Mechanics and Mechanisms , 2009 .

[19]  Alexey E. Romanov,et al.  Random Disclination Ensembles in Ultrafine-Grained Materials Produced by Severe Plastic Deformation , 1996 .

[20]  Sidney Yip,et al.  Molecular dynamics simulations of motion of edge and screw dislocations in a metal , 2002 .

[21]  P. Scardi,et al.  High-energy grinding of FeMo powders , 2007 .

[22]  G. Langlet,et al.  International Tables for Crystallography , 2002 .

[23]  P. Scardi,et al.  Strain in atomistic models of nanocrystalline clusters. , 2012, Journal of nanoscience and nanotechnology.

[24]  P. Scardi,et al.  Realistic nano-polycrystalline microstructures: beyond the classical Voronoi tessellation , 2012 .

[25]  X. D. Liu,et al.  The lattice expansion in nanometre-sized Ni polycrystals , 1994 .

[26]  H. V. Swygenhoven,et al.  Grain Boundaries and Dislocations , 2002 .

[27]  John Arthur Simmons,et al.  FUNDAMENTAL ASPECTS OF DISLOCATION THEORY. VOLUME II. Conference Held at Gaithersburg, Maryland, April 21--25, 1969. , 1970 .

[28]  Mark R. Gilbert,et al.  Edge dislocation mobilities in bcc Fe obtained by molecular dynamics , 2011 .

[29]  L. Vegard,et al.  Die Konstitution der Mischkristalle und die Raumfüllung der Atome , 1921 .

[30]  Tamar Frankel [The theory and the practice...]. , 2001, Tijdschrift voor diergeneeskunde.

[31]  B. Warren,et al.  The Separation of Stacking Fault Broadening in Cold‐Worked Metals , 1952 .

[32]  Peter M. Derlet,et al.  Calculation of x-ray spectra for nanocrystalline materials , 2005 .

[33]  Luca Rebuffi,et al.  MCX: a Synchrotron Radiation Beamline for X‐ray Diffraction Line Profile Analysis , 2014 .

[34]  M. Wilkens The determination of density and distribution of dislocations in deformed single crystals from broadened X‐ray diffraction profiles , 1970 .

[35]  H. V. Swygenhoven,et al.  Deformation in nanocrystalline metals , 2006 .

[36]  P. Scardi,et al.  Line profile analysis: pattern modelling versus profile fitting , 2006 .

[37]  P. Scardi,et al.  Common volume functions and diffraction line profiles of polyhedral domains , 2012 .

[38]  René Guinebretière,et al.  X-Ray Diffraction by Polycrystalline Materials , 2007 .

[39]  T. Hahn International tables for crystallography , 2002 .

[40]  P. Scardi,et al.  Whole powder pattern modelling. , 2002, Acta crystallographica. Section A, Foundations of crystallography.

[41]  B. Warren,et al.  The Effect of Cold‐Work Distortion on X‐Ray Patterns , 1950 .

[42]  A. Molinari,et al.  Role of lattice strain on thermal stability of a nanocrystalline FeMo alloy , 2010 .

[43]  S. Bass,et al.  Constituent quarks and g1 , 1999, hep-ph/9902280.

[44]  Seungwu Han,et al.  Development of new interatomic potentials appropriate for crystalline and liquid iron , 2003 .

[45]  P. Debye,et al.  Zerstreuung von Röntgenstrahlen , 1915 .

[46]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[47]  K. Jacobsen,et al.  A Maximum in the Strength of Nanocrystalline Copper , 2003, Science.

[48]  P. Scardi,et al.  Atomistic modelling of polycrystalline microstructures: An evolutional approach to overcome topological restrictions , 2013 .

[49]  J. Langford,et al.  Scherrer after sixty years: a survey and some new results in the determination of crystallite size , 1978 .

[50]  P. Scardi,et al.  Directional pair distribution function for diffraction line profile analysis of atomistic models , 2013, Journal of applied crystallography.

[51]  D. Balzar,et al.  Size–strain line-broadening analysis of the ceria round-robin sample , 2004 .

[52]  K. Lonsdale X-Ray Diffraction , 1971, Nature.