Univariate Ore Polynomial Rings in Computer Algebra

We present some algorithms related to rings of Ore polynomials (or, briefly, Ore rings) and describe a computer algebra library for basic operations in an arbitrary Ore ring. The library can be used as a basis for various algorithms in Ore rings, in particular, in differential, shift, and q-shift rings.

[1]  Alfred Loewy,et al.  Über reduzible lineare homogene Differentialgleichungen , 1903 .

[2]  Alfred Loewy,et al.  Über vollständig reduzible lineare homogene Differentialgleichungen , 1906 .

[3]  Öystein Ore Formale Theorie der linearen Differentialgleichungen. (Erster Teil). , 1932 .

[4]  J. H. M. Wedderburn,et al.  Non-commutative domains of integrity. , 1932 .

[5]  O. Ore Theory of Non-Commutative Polynomials , 1933 .

[6]  N. Jacobson,et al.  Pseudo-Linear Transformations , 1937 .

[7]  J. Mathias,et al.  Program , 1970, Symposium on VLSI Technology.

[8]  P. Cohn Free rings and their relations , 1973 .

[9]  G. Rw Decision procedure for indefinite hypergeometric summation , 1978 .

[10]  R. W. Gosper Decision procedure for indefinite hypergeometric summation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[11]  P. Robba,et al.  Rational solutions of linear differential equations , 1989 .

[12]  S. A. Abramov,et al.  Rational solutions of linear differential and difference equations with polynomial coefficients , 1991 .

[13]  Marko Petkovsek,et al.  Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficents , 1992, J. Symb. Comput..

[14]  Manuel Bronstein,et al.  An Introduction to Pseudo-Linear Algebra , 1996, Theor. Comput. Sci..

[15]  Sergei A. Abramov,et al.  D'Alembertian solutions of inhomogeneous linear equations (differential, difference, and some other) , 1996, ISSAC '96.

[16]  Ziming Li,et al.  A modular algorithm for computing greatest common right divisors of Ore polynomials , 1997, ISSAC.

[17]  Sergei A. Abramov,et al.  Minimal completely factorable annihilators , 1997, ISSAC.

[18]  Bruno Salvy,et al.  Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..

[19]  Ziming Li,et al.  A subresultant theory for Ore polynomials with applications , 1998, ISSAC '98.

[20]  Mark van Hoeij,et al.  Integration of solutions of linear functional equations , 1999 .

[21]  Joris van der Hoeven FFT-like Multiplication of Linear Differential Operators , 2002, J. Symb. Comput..

[22]  H. Q. Le A direct algorithm to construct the minimal Z-pairs for rational functions , 2003, Adv. Appl. Math..

[23]  Mark Giesbrecht,et al.  Factoring and decomposing ore polynomials over Fq(t) , 2003, ISSAC '03.