Singularity-induced bifurcations in electrical power systems

We analyze the singularity-induced bifurcations (SIBs) in differential-algebraic equations (DAEs) and their occurrence in power systems. Because of the SIBs, a power system may lose stability through the divergence of its eigenvalues through infinity. The SIBs, unlike the saddle-node and Hopf bifurcations, are typical in systems described by DAEs rather than ODEs. Several illustrative examples, including the standard IEEE 14-bus power systems, are given.

[1]  F. R. Gantmakher The Theory of Matrices , 1984 .

[2]  E. C. Zeeman,et al.  On the unstable behaviour of stock exchanges , 1974 .

[3]  K. L. Praprost,et al.  An energy function method for determining voltage collapse during a power system transient , 1994 .

[4]  W. Barnett,et al.  Bifurcations in Macroeconomic Models , 2002 .

[5]  Jaime Ramos,et al.  Alternate Realities: Mathematical Models of Nature and Man , 1990 .

[6]  Yang Lijun,et al.  An improved version of the singularity-induced bifurcation theorem , 2001 .

[7]  R. Beardmore Double singularity-induced bifurcation points and singular Hopf bifurcations , 2000 .

[8]  Chika O. Nwankpa,et al.  Computation of singular and singularity induced bifurcation points of differential-algebraic power system model , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  Wieslaw Marszalek,et al.  DAEs arising from traveling wave solutions of PDEs II , 1999 .

[10]  Peter W. Sauer,et al.  Is strong modal resonance a precursor to power system oscillations , 2001 .

[11]  Ricardo Riaza On the singularity-induced bifurcation theorem , 2002, IEEE Trans. Autom. Control..

[12]  Wieslaw Marszalek,et al.  DAEs arising from traveling wave solutions of PDEs , 1997 .

[13]  R. Fischl,et al.  Local bifurcation in power systems: theory, computation, and application , 1995, Proc. IEEE.

[14]  Wieslaw Marszalek,et al.  Singular distributed parameter systems , 1993 .

[15]  Ricardo Riaza Double SIB points in differential-algebraic systems , 2003, IEEE Trans. Autom. Control..

[16]  Claudio A. Canizares,et al.  Multi-parameter Bifurcation Analysis of Power Systems , 1998 .

[17]  Wieslaw Marszalek,et al.  The Index of an Infinite Dimensional Implicit System , 1999 .

[18]  W. Marszalek,et al.  Existence and accuracy for matrix refinement equations , 1996 .

[19]  Christopher L. DeMarco Identifying swing mode bifurcations and associated limits on available transfer capability , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[20]  Ricardo Riaza,et al.  On singular equilibria of index-1 DAEs , 2000 .

[21]  R. E. Beardmore,et al.  The Singularity-Induced Bifurcation and its Kronecker Normal Form , 2001, SIAM J. Matrix Anal. Appl..

[22]  Wieslaw Marszalek,et al.  Mixed symbolic–numerical computations with general DAEs II: An applications case study , 1998, Numerical Algorithms.

[23]  E. Griepentrog,et al.  Differential-algebraic equations and their numerical treatment , 1986 .

[24]  Leon Y. Bahar,et al.  Static bifurcations in electric power networks: Loss of steady-state stability and voltage collapse , 1986 .

[25]  Arun G. Phadke,et al.  Voltage stability assessment through measurement of a reduced state vector , 1990 .

[26]  R. E. BEARDMORE,et al.  The Flow of a DAE near a Singular Equilibrium , 2002, SIAM J. Matrix Anal. Appl..

[27]  ODE/DAE Integrators and MOL Problems , 2007 .

[28]  D. Hill,et al.  Stability theory for differential/algebraic systems with application to power systems , 1990 .

[29]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.