The edit distance in graphs: Methods, results, and generalizations

The edit distance is a very simple and natural metric on the space of graphs. In the edit distance problem, we fix a hereditary property of graphs and compute the asymptotically largest edit distance of a graph from the property. This quantity is very difficult to compute directly but in many cases, it can be derived as the maximum of the edit distance function. Szemeredi’s regularity lemma, strongly regular graphs, constructions related to the Zarankiewicz problem – all these play a role in the computing of edit distance functions. The most powerful tool is derived from symmetrization, which we use to optimize quadratic programs that define the edit distance function. In this paper, we describe some of the most common tools used for computing the edit distance function, summarize the major current results, outline generalizations to other combinatorial structures, and pose some open problems.

[1]  Alexander Sidorenko Boundedness of optimal matrices in extremal multigraph and digraph problems , 1993, Comb..

[2]  David Fernández-Baca,et al.  Supertrees by Flipping , 2002, COCOON.

[3]  P. Erdös,et al.  On the structure of linear graphs , 1946 .

[4]  Ryan R. Martin On the computation of edit distance functions , 2010, Discret. Math..

[5]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[6]  V. Rödl,et al.  Extremal problems on set systems , 2002 .

[7]  Maria Axenovich,et al.  Avoiding Patterns in Matrices Via a Small Number of Changes , 2016, SIAM J. Discret. Math..

[8]  Ryan R. Martin,et al.  Multicolor and directed edit distance , 2011, 1106.2870.

[9]  Béla Bollobás,et al.  The Speed of Hereditary Properties of Graphs , 2000, J. Comb. Theory B.

[10]  B. Bollobás,et al.  Projections of Bodies and Hereditary Properties of Hypergraphs , 1995 .

[11]  Vojtech Rödl,et al.  Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.

[12]  Andrew Thomason,et al.  Graphs, colours, weights and hereditary properties , 2011 .

[13]  Béla Bollobás,et al.  The Structure of Hereditary Properties and Colourings of Random Graphs , 2000, Comb..

[14]  P. Erdos,et al.  A LIMIT THEOREM IN GRAPH THEORY , 1966 .

[15]  Chelsea Kay Peck,et al.  The edit distance from a cycle- and squared cycle-free graph , 2013 .

[16]  V. Rödl,et al.  The counting lemma for regular k-uniform hypergraphs , 2006 .

[17]  Miklós Simonovits,et al.  The fine structure of octahedron-free graphs , 2011, J. Comb. Theory, Ser. B.

[18]  Béla Bollobás,et al.  The Penultimate Rate of Growth for Graph Properties , 2001, Eur. J. Comb..

[19]  Alan M. Frieze,et al.  Quick Approximation to Matrices and Applications , 1999, Comb..

[20]  V. Sós,et al.  Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.

[21]  H. Prömel,et al.  Excluding Induced Subgraphs III: A General Asymptotic , 1992 .

[22]  Vojtech Rödl,et al.  Applications of the regularity lemma for uniform hypergraphs , 2006, Random Struct. Algorithms.

[23]  Vojtech Rödl,et al.  Extremal problems on set systems , 2002, Random Struct. Algorithms.

[24]  Ryan R. Martin,et al.  On the Edit Distance from K2, t-Free Graphs , 2014, J. Graph Theory.

[25]  Edward R. Scheinerman,et al.  On the Size of Hereditary Classes of Graphs , 1994, J. Comb. Theory B.

[26]  Ryan R. Martin The Edit Distance Function and Symmetrization , 2013, Electron. J. Comb..

[27]  Noga Alon,et al.  What is the furthest graph from a hereditary property , 2008 .

[28]  Noga Alon,et al.  Testing subgraphs in large graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[29]  Vojtech Rödl,et al.  The Algorithmic Aspects of the Regularity Lemma , 1994, J. Algorithms.

[30]  Béla Bollobás,et al.  The unlabelled speed of a hereditary graph property , 2009, J. Comb. Theory, Ser. B.

[31]  Oleg Pikhurko An exact Turán result for the generalized triangle , 2008, Comb..

[32]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[33]  Noga Alon,et al.  Efficient Testing of Large Graphs , 2000, Comb..

[34]  Hans Jürgen Prömel,et al.  Excluding Induced Subgraphs: Quadrilaterals , 1991, Random Struct. Algorithms.

[35]  Zoltán Füredi,et al.  New Asymptotics for Bipartite Turán Numbers , 1996, J. Comb. Theory, Ser. A.

[36]  Noga Alon,et al.  The maximum edit distance from hereditary graph properties , 2008, J. Comb. Theory, Ser. B.

[37]  Noga Alon Testing subgraphs in large graphs , 2002, Random Struct. Algorithms.

[38]  Béla Bollobás,et al.  Measures on monotone properties of graphs , 2002, Discret. Appl. Math..

[39]  Peter Keevash Surveys in Combinatorics 2011: Hypergraph Turán problems , 2011 .

[40]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[41]  Maria Axenovich,et al.  On the editing distance of graphs , 2008, J. Graph Theory.

[42]  Noga Alon,et al.  What is the furthest graph from a hereditary property? , 2008, Random Struct. Algorithms.

[43]  Andrew Thomason,et al.  Extremal Graphs and Multigraphs with Two Weighted Colours , 2010 .

[44]  József Balogh,et al.  Edit Distance and its Computation , 2008, Electron. J. Comb..

[45]  Béla Bollobás,et al.  Hereditary and Monotone Properties of Graphs , 2013, The Mathematics of Paul Erdős II.

[46]  Hans Jürgen Prömel,et al.  Excluding Induced Subgraphs II: Extremal Graphs , 1993, Discret. Appl. Math..

[47]  Jozef Skokan,et al.  Applications of the regularity lemma for uniform hypergraphs , 2006 .

[48]  W. G. Brown On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.