Products of rectangular random matrices: singular values and progressive scattering.

We discuss the product of M rectangular random matrices with independent Gaussian entries, which have several applications, including wireless telecommunication and econophysics. For complex matrices an explicit expression for the joint probability density function is obtained using the Harish-Chandra-Itzykson-Zuber integration formula. Explicit expressions for all correlation functions and moments for finite matrix sizes are obtained using a two-matrix model and the method of biorthogonal polynomials. This generalizes the classical result for the so-called Wishart-Laguerre Gaussian unitary ensemble (or chiral unitary ensemble) at M=1, and previous results for the product of square matrices. The correlation functions are given by a determinantal point process, where the kernel can be expressed in terms of Meijer G-functions. We compare the results with numerical simulations and known results for the macroscopic level density in the limit of large matrices. The location of the end points of support for the latter are analyzed in detail for general M. Finally, we consider the so-called ergodic mutual information, which gives an upper bound for the spectral efficiency of a MIMO communication channel with multifold scattering.

[1]  Vinayak Spectral density of a Wishart model for nonsymmetric correlation matrices. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Lun Zhang,et al.  A note on the limiting mean distribution of singular values for products of two Wishart random matrices , 2013, 1305.0726.

[3]  Lu Wei,et al.  Singular value correlation functions for products of Wishart random matrices , 2013, ArXiv.

[4]  J. R. Ipsen Products of Independent Quaternion Ginibre Matrices and their Correlation Functions , 2013 .

[5]  Eugene Strahov,et al.  Hole Probabilities and Overcrowding Estimates for Products of Complex Gaussian Matrices , 2012, 1211.1576.

[6]  Z. Burda,et al.  Universal microscopic correlation functions for products of independent Ginibre matrices , 2012, 1208.0187.

[7]  J. Baik,et al.  The Oxford Handbook of Random Matrix Theory , 2011 .

[8]  Wojciech T. Bruzda,et al.  Induced Ginibre ensemble of random matrices and quantum operations , 2011, 1107.5019.

[9]  Karol Zyczkowski,et al.  Product of Ginibre matrices: Fuss-Catalan and Raney distributions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Teodor Banica,et al.  Free Bessel Laws , 2007, Canadian Journal of Mathematics.

[11]  A. Soshnikov,et al.  Products of Independent non-Hermitian Random Matrices , 2010, 1012.4497.

[12]  B. Collins,et al.  Generating random density matrices , 2010, 1010.3570.

[13]  Z. Burda,et al.  Eigenvalues and singular values of products of rectangular gaussian random matrices. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[15]  Ion Nechita,et al.  Random graph states, maximal flow and Fuss–Catalan distributions , 2010, 1003.3075.

[16]  Z. Burda,et al.  Spectrum of the product of independent random Gaussian matrices. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Marco Bertola,et al.  Cauchy biorthogonal polynomials , 2009, J. Approx. Theory.

[18]  F. Benaych-Georges,et al.  On a surprising relation between the Marchenko-Pastur law, rectangular and square free convolutions , 2008, 0808.3938.

[19]  J. Szmigielski,et al.  The Cauchy Two-Matrix Model , 2008, 0804.0873.

[20]  M. Nowak,et al.  Large-Nc confinement and turbulence. , 2008, Physical Review Letters.

[21]  R. Narayanan,et al.  Universality of large N phase transitions in Wilson loop operators in two and three dimensions , 2007, 0711.4551.

[22]  G. Akemann MATRIX MODELS AND QCD WITH CHEMICAL POTENTIAL , 2007, hep-th/0701175.

[23]  J. Bouchaud,et al.  Large dimension forecasting models and random singular value spectra , 2005, physics/0512090.

[24]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[25]  J. Negele,et al.  Diffusion of Wilson loops , 2004, hep-th/0412003.

[26]  Antonia Maria Tulino,et al.  Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.

[27]  J. Osborn Universal results from an alternate random-matrix model for QCD with a baryon chemical potential. , 2004, Physical review letters.

[28]  Dla Polski,et al.  EURO , 2004 .

[29]  J. Jurkiewicz,et al.  Infinite products of large random matrices and matrix-valued diffusion , 2003, math-ph/0304032.

[30]  A. D. Jackson,et al.  Products of random matrices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  R. Muller On the asymptotic eigenvalue distribution of concatenated vector-valued fading channels , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[32]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[33]  M. J. Gans,et al.  On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas , 1998, Wirel. Pers. Commun..

[34]  M. L. Mehta,et al.  Matrices coupled in a chain: I. Eigenvalue correlations , 1997, cond-mat/9710230.

[35]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[36]  Angelo Vulpiani,et al.  Products of Random Matrices , 1993 .

[37]  A. Crisanti,et al.  Products of random matrices in statistical physics , 1993 .

[38]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[39]  C. Itzykson,et al.  The planar approximation. II , 1980 .

[40]  N. S. Barnett,et al.  Private communication , 1969 .

[41]  Harish-Chandra Differential Operators on a Semisimple Lie Algebra , 1957 .

[42]  橋本 英典,et al.  A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi ; Higher Transcendental Functions, Vols. I, II, III. McGraw-Hill, New York-Toronto-London, 1953, 1953, 1955. xxvi+302, xvii+396, xvii+292頁. 16×23.5cm. $6.50, $7.50, $6.50. , 1955 .

[43]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .