Optimal state transfer of a single dissipative two-level system

Optimal state transfer of a single two-level system (TLS) coupled to an Ohmic boson bath via off-diagonal TLS-bath coupling is studied by using optimal control theory. In the weak system-bath coupling regime where the time-dependent Bloch-Redfield formalism is applicable, we obtain the Bloch equation to probe the evolution of the dissipative TLS in the presence of a time-dependent external control field. By using the automatic differentiation technique to compute the gradient for the cost functional, we calculate the optimal transfer integral profile that can achieve an ideal transfer within a dimer system in the Fenna-Matthews-Olson (FMO) model. The robustness of the control profile against temperature variation is also analyzed.

[1]  W. Pötz,et al.  Optimal control of dissipation for the example of the spin-boson model , 2007 .

[2]  A. Cámara-Artigas,et al.  The structure of the FMO protein from Chlorobium tepidum at 2.2 Å resolution , 2004, Photosynthesis Research.

[3]  D. Vitali,et al.  Using parity kicks for decoherence control , 1998, quant-ph/9808055.

[4]  P. Hänggi,et al.  Quantum dynamics in strong fluctuating fields , 2005, cond-mat/0510774.

[5]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[6]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[8]  P. Zanardi Symmetrizing Evolutions , 1998, quant-ph/9809064.

[9]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[10]  Ian A. Walmsley,et al.  Quantum Physics Under Control , 2003 .

[11]  H. Jirari,et al.  Optimal coherent control of dissipative N-level systems (12 pages) , 2005 .

[12]  O. Buisson,et al.  Optimal control of superconducting N-level quantum systems , 2009, 0903.4028.

[13]  H. Kachkachi,et al.  Optimal switching of a nanomagnet assisted by microwaves , 2010, 1012.3901.

[14]  Seth Lloyd,et al.  Universal Control of Decoupled Quantum Systems , 1999 .

[15]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[16]  H. Briegel,et al.  Dynamic entanglement in oscillating molecules and potential biological implications. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Unruh Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[18]  Javier Prior,et al.  The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes , 2013, Nature Physics.

[19]  B. Matthews,et al.  Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola , 1975, Nature.

[20]  H. Jirari,et al.  Optimal control approach to dynamical suppression of decoherence of a qubit , 2009 .

[21]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[22]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[23]  N. Wu,et al.  Resonant energy transfer assisted by off-diagonal coupling. , 2011, The Journal of chemical physics.

[24]  Scully,et al.  Generalization of the Maxwell-Bloch equations to the case of strong atom-field coupling. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[25]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[26]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[27]  Dla Polski,et al.  EURO , 2004 .

[28]  Constantin Brif,et al.  Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles , 2007, quant-ph/0702147.

[29]  Persistence of a pinch in a pipe , 2006, cond-mat/0607339.

[30]  Taylor Francis Online,et al.  Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond , 2006, cond-mat/0606771.

[31]  T. Renger,et al.  How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. , 2006, Biophysical journal.

[32]  P. Hänggi,et al.  Landau–Zener tunnelling in dissipative circuit QED , 2008, 0807.1748.

[33]  H. Rabitz,et al.  Control of quantum phenomena: past, present and future , 2009, 0912.5121.

[34]  R. Silbey,et al.  Theory of electronic transport in molecular crystals. II. Zeroth order states incorporating nonlocal linear electron–phonon coupling , 1985 .

[35]  Paul Brumer,et al.  Physical Basis for Long-Lived Electronic Coherence in Photosynthetic Light-Harvesting Systems , 2011, 1107.0322.

[36]  Lloyd,et al.  Dynamical generation of noiseless quantum subsystems , 2000, Physical review letters.

[37]  Laurent Hascoët,et al.  TAPENADE 2.1 user's guide , 2004 .

[38]  U. Weiss Quantum Dissipative Systems , 1993 .

[39]  G. Mahan Many-particle physics , 1981 .

[40]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[41]  W. Potz,et al.  Quantum optimal control theory and dynamic coupling in the spin-boson model , 2006, cond-mat/0602497.

[42]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.