Reduced Dimensionality Multiphysics Model for Efficient VCSEL Optimization

The ICT scene is dominated by short-range intra-datacenter interconnects and networking, requiring high speed and stable operations at high temperatures. GaAs/AlGaAs vertical-cavity surface-emitting lasers (VCSELs) emitting at 850–980 nm have arisen as the main actors in this framework. Starting from our in-house 3D fully comprehensive VCSEL solver VENUS, in this work we present the possibility of downscaling the dimensionality of the simulation, ending up with a multiphysics 1D solver (D1ANA), which is shown to be capable of reproducing the experimental data very well. D1ANA is then extensively applied to optimize high-temperature operation, by modifying cavity detuning and distributed Bragg’s reflector lengths.

[1]  Kanakis,et al.  High-Speed VCSEL-Based Transceiver for 200 GbE Short-Reach Intra-Datacenter Optical Interconnects , 2019, Applied Sciences.

[2]  P. Debernardi,et al.  HOT-VELM: A Comprehensive and Efficient Code for Fully Vectorial and 3-D Hot-Cavity VCSEL Simulation , 2009, IEEE Journal of Quantum Electronics.

[3]  107.5 Gb/s 850 nm multi- and single-mode VCSEL transmission over 10 and 100 m of multi-mode fiber , 2016, 2016 Optical Fiber Communications Conference and Exhibition (OFC).

[4]  Analytical Electromagnetic Solution for Bragg Mirrors With Graded Interfaces and Guidelines for Enhanced Reflectivity , 2007, IEEE Journal of Quantum Electronics.

[5]  Holger Moench,et al.  Vertical-cavity surface-emitting laser technology applications with focus on sensors and three-dimensional imaging , 2018, Japanese Journal of Applied Physics.

[6]  Johan S. Gustavsson,et al.  The Future of VCSELs: Dynamics and Speed Limitations , 2020, 2020 IEEE Photonics Conference (IPC).

[7]  James A. Lott,et al.  Vertical-cavity surface-emitting lasers for data communication and sensing , 2019, Photonics Research.

[8]  Gaudenzio Meneghesso,et al.  Physical mechanisms limiting the performance and the reliability of GaN-based LEDs , 2018 .

[9]  R. Michalzik,et al.  Probing Thermal Effects in VCSELs by Experiment-Driven Multiphysics Modeling , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  R Heilman,et al.  Ionization energy of the carbon acceptor in AlxGa1-xAs , 1990 .

[11]  M. Goano,et al.  Anisotropic Transverse Confinement Design for Electrically Pumped 850 nm VCSELs Tuned by an Intra Cavity Liquid-Crystal Cell , 2022, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  G. A. Baraff,et al.  SEMICLASSICAL DESCRIPTION OF ELECTRON TRANSPORT IN SEMICONDUCTOR QUANTUM-WELL DEVICES , 1997 .

[13]  Zsolt Puskás,et al.  Self-consistent real three-dimensional simulation of vertical-cavity surface-emitting lasers , 2006 .

[14]  B. Tell,et al.  TEMPERATURE-DEPENDENCE OF GAAS-ALGAAS VERTICAL CAVITY SURFACE EMITTING LASERS , 1992 .

[15]  Y. Ning,et al.  High-temperature operating 894.6nm-VCSELs with extremely low threshold for Cs-based chip scale atomic clocks. , 2015, Optics express.

[16]  R. K. Smith,et al.  Role of Carrier Capture in Microscopic Simulation of Multi-Quantum-Well Semiconductor Laser Diodes , 2002 .

[17]  G. Ghione,et al.  Analysis of Carrier Transport in Tunnel-Junction Vertical-Cavity Surface-Emitting Lasers by a Coupled Nonequilibrium Green’s Function–Drift-Diffusion Approach , 2020 .

[18]  R. Dupuis,et al.  Thermal Design Considerations for III-N Vertical-Cavity Surface-Emitting Lasers Using Electro-Opto-Thermal Numerical Simulations , 2019, IEEE Journal of Quantum Electronics.

[19]  M. Lades,et al.  Dynamics of incomplete ionized dopants and their impact on 4H/6H-SiC devices , 1999 .

[20]  Benjamin Kögel,et al.  Assessment of VCSEL thermal rollover mechanisms from measurements and empirical modeling. , 2011, Optics express.

[21]  H. Sigg,et al.  The refractive index of AlxGa1−xAs below the band gap: Accurate determination and empirical modeling , 2000 .

[22]  I. Lyubomirsky,et al.  VCSEL-Based Interconnects for Current and Future Data Centers , 2015, Journal of Lightwave Technology.

[23]  25.78 Gbit/s data transmission over 2 km multi‐mode‐fibre with 850 and 910 nm single‐mode VCSELs and a commercial quad small form‐factor pluggable transceiver , 2018, Electronics Letters.

[24]  Holger Moench,et al.  VCSEL-based sensors for distance and velocity , 2016, SPIE OPTO.

[25]  R. Michalzik,et al.  Modulation response of VCSELs: a physics-based simulation approach , 2020, 2020 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD).

[26]  Nir Tessler,et al.  On carrier injection and gain dynamics in quantum well lasers , 1993 .

[27]  P. B. Allen,et al.  Electron transport in , 2006 .

[28]  Pierluigi Debernardi,et al.  Three-dimensional model for vectorial fields in vertical-cavity surface-emitting lasers , 2001 .

[29]  N. Ledentsov,et al.  Comprehensive Analysis of Electric Properties of Oxide-Confined Vertical-Cavity Surface-Emitting Lasers , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  Michele Goano,et al.  Algorithm 745: computation of the complete and incomplete Fermi-Dirac integral , 1995, TOMS.

[31]  Rainer Michalzik,et al.  VENUS: A Vertical-Cavity Surface-Emitting Laser Electro-Opto-Thermal NUmerical Simulator , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[32]  F. Cappelluti,et al.  Physics-Based Modeling and Experimental Study of Si-Doped InAs/GaAs Quantum Dot Solar Cells , 2018 .

[33]  M. Hibbs-Brenner,et al.  The role of VCSELs in 3D sensing and LiDAR , 2021, OPTO.

[34]  Wolfgang Fichtner,et al.  A comprehensive VCSEL device simulator , 2003 .

[35]  Wolfgang Fichtner,et al.  A multidimensional laser simulator for edge-emitters including quantum carrier capture , 2000 .

[36]  M. Bugajski,et al.  Comprehensive self-consistent three-dimensional simulation of an operation of the GaAs-based oxide-confined 1.3-μm quantum-dot (InGa)As/GaAs vertical-cavity surface-emitting lasers , 2004 .

[37]  J. Piprek What Limits the Efficiency of High-Power InGaN/GaN Lasers? , 2017, IEEE Journal of Quantum Electronics.

[38]  Jörgen Bengtsson,et al.  A comprehensive model for the modal dynamics of vertical-cavity surface-emitting lasers , 2002 .

[39]  Giovanni Ghione,et al.  Correlating electroluminescence characterization and physics-based models of InGaN/GaN LEDs: Pitfalls and open issues , 2014 .

[40]  Kent D. Choquette,et al.  Comprehensive numerical modeling of vertical-cavity surface-emitting lasers , 1996 .

[41]  Michele Goano,et al.  Series expansion of the Fermi-Dirac integral Fj(x) over the entire domain of real j and x , 1993 .

[42]  Rainer Michalzik,et al.  High-performance oxide-confined GaAs VCSELs , 1997 .

[43]  Larry A. Coldren,et al.  Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance , 1993 .

[44]  Shun Lien Chuang,et al.  Physics of Photonic Devices , 2009 .

[45]  Young Jae Park,et al.  Lateral Current Spreading in III-N Ultraviolet Vertical-Cavity Surface-Emitting Lasers Using Modulation-Doped Short Period Superlattices , 2018, IEEE Journal of Quantum Electronics.

[46]  P. Westbergh,et al.  High speed and high temperature operation of VCSELs , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[47]  R. Michalzik VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers , 2012 .

[48]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[49]  R. Michalzik,et al.  Bridging scales in multiphysics VCSEL modeling , 2019, Optical and Quantum Electronics.

[50]  Alberto Tibaldi,et al.  Many-valley electron transport in AlGaAs VCSELs , 2017 .

[52]  Andrea L. Lacaita,et al.  Quantum-corrected drift-diffusion models for transport in semiconductor devices , 2005 .

[53]  Mark R. Pinto,et al.  Elimination of heterojunction band discontinuities by modulation doping , 1992 .

[54]  J.A. Hudgings,et al.  Temperature Profiling of VCSELs by Thermoreflectance Microscopy , 2007, IEEE Photonics Technology Letters.

[55]  K. Hess,et al.  Simulation of carrier transport and nonlinearities in quantum-well laser diodes , 1998 .