Interval Archetypes: A New Tool for Interval Data Analysis

Archetypal analysis aims at synthesizing single-valued data sets through a few (not necessarily observed) points that are called archetypes, under the constraint that all points can be represented as a convex combination of the archetypes themselves and that the archetypes are a convex combination of the data. In this paper, we extend this methodology to the case of interval-valued data, which represent a special case of set-valued data, where the sets are compact and identified by ordered pairs of values. In addition, we propose to use interval archetypes as a tool in an analysis strategy to explore and mine complex data sets. © 2012 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 5: 322-335, 2012

[1]  H. Coxeter,et al.  Introduction to Geometry , 1964, The Mathematical Gazette.

[2]  Hans-Hermann Bock,et al.  Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data , 2000 .

[3]  M. R. D’Esposito,et al.  G. RAGOZINI, A new R-ordering procedure to rank multivariate performances , 2008 .

[4]  Giancarlo Ragozini,et al.  On the use of archetypes as benchmarks , 2008 .

[5]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[6]  Adele Cutler,et al.  Introduction to archetypal analysis of spatio-temporal dynamics , 1996 .

[7]  Leigh Morris,et al.  Consumer Archetypes: A New Approach to Developing Consumer Understanding Frameworks , 2006, Journal of Advertising Research.

[8]  Forrest W. Young,et al.  Multivariate Statistical Visualization , 1992 .

[9]  Hans-Hermann Bock,et al.  Analysis of Symbolic Data , 2000 .

[10]  S. Marinetti,et al.  Archetypes and principal components of an IR image sequence , 2007 .

[11]  B. Chan,et al.  Archetypal analysis of galaxy spectra , 2003, astro-ph/0301491.

[12]  Lynne Billard Some analyses of interval data , 2008, ITI 2008 - 30th International Conference on Information Technology Interfaces.

[13]  Emily Stone Exploring archetypal dynamics of pattern formation in cellular flames , 2002 .

[14]  Edwin Diday,et al.  Principal component analysis for interval‐valued observations , 2011, Stat. Anal. Data Min..

[15]  Deborah F. Swayne,et al.  Interactive and Dynamic Graphics for Data Analysis - With R and GGobi , 2007, Use R.

[16]  Giancarlo Ragozini,et al.  ARCHETYPAL ANALYSIS FOR INTERVAL DATA IN MARKETING RESEARCH 1 , 2006 .

[17]  F. Palumbo,et al.  A PCA for interval-valued data based on midpoints and radii , 2003 .

[18]  Marina Marino,et al.  Archetypal Analysis of Interval Data , 2010, Reliab. Comput..

[19]  C. Ji An Archetypal Analysis on , 2005 .

[20]  Forrest W. Young,et al.  27 Multivariate statistical visualization , 1993, Computational Statistics.

[21]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[22]  Giancarlo Ragozini,et al.  Archetypal Symbolic Objects , 2013 .

[23]  Marie Chavent,et al.  A Hausdorff Distance Between Hyper-Rectangles for Clustering Interval Data , 2004 .

[24]  E. Hansen,et al.  Interval Arithmetic in Matrix Computations, Part II , 1965 .

[25]  Paolo Giordani,et al.  Principal Component Analysis of symmetric fuzzy data , 2004, Comput. Stat. Data Anal..

[26]  L. Finesso,et al.  Matrix factorization methods: Application to thermal NDT/E , 2006 .

[27]  E. Wegman Hyperdimensional Data Analysis Using Parallel Coordinates , 1990 .

[28]  M. H. van Emden,et al.  Interval arithmetic: From principles to implementation , 2001, JACM.

[29]  Giancarlo Ragozini,et al.  Exploring Data Through Archetypes , 2010 .

[30]  Richard T. Carson,et al.  Archetypal analysis: a new way to segment markets based on extreme individuals , 2003 .