Quantifying leaf-scale variations in water absorption in lettuce from hyperspectral imagery: a laboratory study with implications for measuring leaf water content in the context of precision agriculture

[1]  E. Fereres,et al.  Evaluating the performance of xanthophyll, chlorophyll and structure-sensitive spectral indices to detect water stress in five fruit tree species , 2018, Precision Agriculture.

[2]  Yufeng Ge,et al.  High Throughput In vivo Analysis of Plant Leaf Chemical Properties Using Hyperspectral Imaging , 2017, Front. Plant Sci..

[3]  Li He,et al.  Canopy Vegetation Indices from In situ Hyperspectral Data to Assess Plant Water Status of Winter Wheat under Powdery Mildew Stress , 2017, Front. Plant Sci..

[4]  Alexander Wendel,et al.  Illumination compensation in ground based hyperspectral imaging , 2017 .

[5]  James Underwood,et al.  Efficient in‐field plant phenomics for row‐crops with an autonomous ground vehicle , 2017, J. Field Robotics.

[6]  Fang Huang,et al.  Onset of drying and dormancy in relation to water dynamics of semi-arid grasslands from MODIS NDWI , 2017 .

[7]  A. J. S. Neto,et al.  Assessment of Photosynthetic Pigment and Water Contents in Intact Sunflower Plants from Spectral Indices , 2017 .

[8]  Xiaohuan Xi,et al.  Estimating the Biomass of Maize with Hyperspectral and LiDAR Data , 2016, Remote. Sens..

[9]  Tuure Takala,et al.  Spatial variation of canopy PRI with shadow fraction caused by leaf-level irradiation conditions , 2016 .

[10]  Hairong Zhang,et al.  Highly sensitive image-derived indices of water-stressed plants using hyperspectral imaging in SWIR and histogram analysis , 2015, Scientific Reports.

[11]  S. Sankaran,et al.  Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review , 2015 .

[12]  Richard J. Murphy,et al.  Evaluating simple proxy measures for estimating depth of the ~ 1900 nm water absorption feature from hyperspectral data acquired under natural illumination , 2015 .

[13]  Ni Guo,et al.  Determining the Canopy Water Stress for Spring Wheat Using Canopy Hyperspectral Reflectance Data in Loess Plateau Semiarid Regions , 2015 .

[14]  Fei Liu,et al.  Hyperspectral Imaging for Mapping of Total Nitrogen Spatial Distribution in Pepper Plant , 2014, PloS one.

[15]  Stefano Amaducci,et al.  Nitrogen Status Assessment for Variable Rate Fertilization in Maize through Hyperspectral Imagery , 2014, Remote. Sens..

[16]  L. Plümer,et al.  Detection of early plant stress responses in hyperspectral images , 2014 .

[17]  Huili Gong,et al.  Sensitivity Analysis of Vegetation Reflectance to Biochemical and Biophysical Variables at Leaf, Canopy, and Regional Scales , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[18]  P. Zarco-Tejada,et al.  Relationships between net photosynthesis and steady-state chlorophyll fluorescence retrieved from airborne hyperspectral imagery , 2013 .

[19]  Pablo J. Zarco-Tejada,et al.  Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV) , 2013 .

[20]  Craig S. T. Daughtry,et al.  Remote sensing of fuel moisture content from ratios of narrow-band vegetation water and dry-matter indices , 2013 .

[21]  P. Zarco-Tejada,et al.  Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera , 2012 .

[22]  Chenghai Yang,et al.  Using spectral distance, spectral angle and plant abundance derived from hyperspectral imagery to characterize crop yield variation , 2012, Precision Agriculture.

[23]  Craig S. T. Daughtry,et al.  Comparison of hyperspectral retrievals with vegetation water indices for leaf and canopy water content , 2011, Optical Engineering + Applications.

[24]  Gilles Rabatel,et al.  Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat , 2011 .

[25]  U. Steiner,et al.  Spectral signatures of sugar beet leaves for the detection and differentiation of diseases , 2010, Precision Agriculture.

[26]  Reza Ehsani,et al.  Review: A review of advanced techniques for detecting plant diseases , 2010 .

[27]  Pablo J. Zarco-Tejada,et al.  Detecting water stress effects on fruit quality in orchards with time-series PRI airborne imagery , 2010 .

[28]  T. Jackson,et al.  Remote sensing of vegetation water content from equivalent water thickness using satellite imagery , 2008 .

[29]  John R. Miller,et al.  Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy , 2005 .

[30]  Roberta E. Martin,et al.  Substrate age and precipitation effects on Hawaiian forest canopies from spaceborne imaging spectroscopy , 2005 .

[31]  R. Murphy,et al.  Remote-sensing of benthic chlorophyll : should ground-truth data be expressed in units of area or mass? , 2005 .

[32]  John R. Miller,et al.  Monitoring crop biomass accumulation using multi-temporal hyperspectral remote sensing data , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[33]  Chenghai Yang,et al.  Airborne Hyperspectral Imagery and Yield Monitor Data for Mapping Cotton Yield Variability , 2004, Precision Agriculture.

[34]  D. Sims,et al.  Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: a comparison of indices based on liquid water and chlorophyll absorption features , 2003 .

[35]  S. Tarantola,et al.  Detecting vegetation leaf water content using reflectance in the optical domain , 2001 .

[36]  R. Pu,et al.  Spectroscopic determination of wheat water status using 1650-1850 nm spectral absorption features , 2001 .

[37]  D. Roberts,et al.  Deriving Water Content of Chaparral Vegetation from AVIRIS Data , 2000 .

[38]  Peter R. J. North,et al.  The Propagation of Foliar Biochemical Absorption Features in Forest Canopy Reflectance , 1999 .

[39]  E. J. Milton,et al.  Processing of High Spectral Resolution Reflectance Data for the Retrieval of Canopy Water Content Information , 1998 .

[40]  J. Peñuelas,et al.  Estimation of plant water concentration by the reflectance Water Index WI (R900/R970) , 1997 .

[41]  B. Gao NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space , 1996 .

[42]  J. Peñuelas,et al.  The reflectance at the 950–970 nm region as an indicator of plant water status , 1993 .

[43]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[44]  F. M. Danson,et al.  High-spectral resolution data for determining leaf water content , 1992 .

[45]  B. Rock,et al.  Detection of changes in leaf water content using Near- and Middle-Infrared reflectances , 1989 .

[46]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[47]  S. Ollinger Sources of variability in canopy reflectance and the convergent properties of plants. , 2011, The New phytologist.