Accurate and efficient vortex-capturing for a helicopter rotor in hover

This investigation has been carried out under a contract awarded by the Boeing/McDonnell Douglas Helicopter Company, Purchase Order Number 689578. The Boeing Company (Mesa) has granted NLR permission to publish this report. Summary A numerical method has been developed for predicting from first principles, the complex vortex-wake for a helicopter rotor in hover. The method is based on the solution of the three-dimensional, compressible Euler equations expressed in an Arbitrary Lagrangian Eulerian (ALE) reference frame. A second-order accurate discontinuous Galerkin (DG) finite-element method is used to discretize the governing equations on a hexahedral mesh. Unstructured, local mesh refinement is performed to enable prediction of the structure of the vortex wake while computational efficiency is retained through a mesh de-refinement process. Convergence acceleration is achieved using a multi-grid technique. While this study emphasizes the wake system for a hovering rotor, the developed method, when applied on a dynamically-deforming mesh, is equally applicable for predicting the vortex-wake for a rotor in forward flight. Accuracy of the predictions are assessed using the wind tunnel data for the two-bladed Caradonna-Tung rotor in hover.

[1]  Francesco Bassi,et al.  A High Order Discontinuous Galerkin Method for Compressible Turbulent Flows , 2000 .

[2]  Rupak Biswas,et al.  Helicopter Noise Predictions Using Kirchhoff Methods , 1995 .

[3]  J. Baeder,et al.  Flowfield of a Lifting Rotor in Hover: A Navier-Stokes Simulation , 1992 .

[4]  H. van der Ven,et al.  Discontinuous Galerkin Finite Element Method with Anisotropic Local Grid Refinement for Inviscid Compressible Flows , 1998 .

[5]  Mark S. Shephard,et al.  Effect of Tip Vortex Resolution on UH-60A Rotor-Blade Hover Performance Calculations , 1998 .

[6]  A. Conlisk,et al.  The fluid dynamics of rotor wakes - Theory, computation and experiment , 1999 .

[7]  Timothy J. Barth,et al.  High-order methods for computational physics , 1999 .

[8]  Lakshmi N. Sankar,et al.  First-Principles Based High Order Methodologies For Rotorcraft Flowfield Studies , 1999 .

[9]  F. X. Caradonna,et al.  Experimental and Analytical Studies of a Model Helicopter Rotor in Hover , 1980 .

[10]  Oh Joon Kwon,et al.  Numerical prediction of rotor hover performances using unstructured adaptive meshes , 2000 .

[11]  J. Gordon Leishman,et al.  Rotor Free-Wake Modeling Using a Pseudo-Implicit Technique — Including Comparisons with Experimental Data , 1995 .

[12]  K. Pahlke Berechnung von Strömungsfeldern um Hubschrauberrotoren im Vorwärtsflug durch die Lösung der Euler-Gleichungen , 1999 .

[13]  James L. Tangler,et al.  A Prescribed Wake Lifting Surface Hover Performance Analysis , 1977 .

[14]  Earl P. N. Duque,et al.  Flowfield analysis of modern helicopter rotors in hover by Navier-Stokes method , 1993 .

[15]  S. Rebay,et al.  GMRES Discontinuous Galerkin Solution of the Compressible Navier-Stokes Equations , 2000 .

[16]  Timothy J. Barth,et al.  A Finite-Volume Euler Solver for Computing Rotary-Wing Aerodynamics on Unstructured Meshes , 1993 .

[17]  Siegfried Wagner,et al.  Euler procedure for calculation of the steady rotor flow with emphasis on wake evolution , 1990 .

[18]  K. Ramachandran,et al.  Rotor hover performance prediction using a free-wake, computational fluid dynamics method , 1989 .

[19]  Bernardo Cockburn,et al.  Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .

[20]  Roger C. Strawn,et al.  Computational modeling of hovering rotors and wakes , 2000 .

[21]  Anton J. Landgrebe,et al.  The Wake Geometry of a Hovering Helicopter Rotor and its Influence on Rotor Performance , 1972 .

[22]  Roger C. Strawn,et al.  Hovering Rotor and Wake Calculations with an Overset-Grid Navier-Stokes Solver , 1999 .

[23]  Daniel A. Wachspress,et al.  New free-wake analysis of rotorcraft hover performance using influence coefficients , 1989 .

[24]  Wayne Johnson,et al.  Rotorcraft Aerodynamics Models for a Comprehensive Analysis , 1998 .

[25]  W. Mccroskey,et al.  Navier-Stokes calculations of hovering rotor flowfields , 1988 .

[26]  J. Raddatz,et al.  Validation and Assessment of DLR and ONERA Euler Codes for Multibladed Rotors in Hover , 1996 .

[27]  Jaap J. W. van der Vegt,et al.  Experiences with Advanced CFD Algorithms on NEC SX-4 , 1996, VECPAR.

[28]  Leonid Oliker,et al.  Efficient Helicopter Aerodynamic and Aeroacoustic Predictions on Parallel Computers , 1996 .