Wavelet Based Simulation of Elastic Wave Propagation

One of the multiresolution-based schemes reinforced with mathematical background is the wavelet theory. Development of this theory is simultaneously done by scientists, mathematicians and engineers [1]. Wavelets can detect different local features of data; the properties that locally separated in different resolutions. Wavelets can efficiently distinguish overall smooth variation of a solution from locally high transient ones separated in different resolutions. This multiresolution feature has been interested many researchers, especially ones in the numerical simulation of PDEs [1]. Wavelet based methods are efficient in problems containing very fine and sharp transitions in limited zones of a computation domain having an overall smooth structure. In brief, the most performance of such multiresolution-based methods is obtained in systems containg several length scales.

[1]  Siam J. Sci,et al.  A WAVELET-OPTIMIZED, VERY HIGH ORDER ADAPTIVE GRID AND ORDER NUMERICAL METHOD , 1998 .

[2]  L. Fu,et al.  A Wavelet-Optimized Adaptive Grid Method for Finite-Difference Simulation of Wave Propagation , 2009 .

[3]  R. C. Y. Chin,et al.  Dispersion and Gibbs phenomenon associated with difference approximations to initial boundary-value problems for hyperbolic equations☆ , 1975 .

[4]  B. Kennett,et al.  Scattering of elastic waves in media with a random distribution of fluid-filled cavities: theory and numerical modelling , 2004 .

[5]  M. Unser SPLINES : A PERFECT FIT FOR SIGNAL / IMAGE PROCESSING , 1999 .

[6]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .

[7]  R. Vichnevetsky Propagation and spurious reflection in finite-element approximations of hyperbolic equations , 1985 .

[8]  C. Reinsch Smoothing by spline functions , 1967 .

[9]  Manuel A. Alves,et al.  Solution of hyperbolic PDEs using a stable adaptive multiresolution method , 2003 .

[10]  Robert Vichnevetsky,et al.  Wave propagation and reflection in irregular grids for hyperbolic equations , 1987 .

[11]  Kevin Amaratunga,et al.  WAVELET BASED GREEN'S FUNCTION APPROACH TO 2D PDEs , 1993 .

[12]  James M. Keiser,et al.  An Adaptive Pseudo-Wavelet Approach for Solving Nonlinear Partial Differential Equations , 1997 .

[13]  R. Rannacher,et al.  Advances in Mathematical Fluid Mechanics , 2010 .

[14]  Asadollah Noorzad,et al.  Simulating 2D Waves Propagation in Elastic Solid Media Using Wavelet Based Adaptive Method , 2010, J. Sci. Comput..

[15]  B. Kennett,et al.  A wavelet-based method for simulation of two-dimensional elastic wave propagation , 2002 .

[16]  Fernando T. Pinho,et al.  Adaptive multiresolution approach for solution of hyperbolic PDEs , 2002 .

[17]  P. Yuri,et al.  Well-posed, Ill-posed, and Intermediate Problems with Applications , 2005 .

[18]  A. Harten Adaptive Multiresolution Schemes for Shock Computations , 1994 .

[19]  A Multiscale Wavelet Solver with O(n) Complexity , 1995 .

[20]  G. Wei,et al.  Conjugate filter approach for shock capturing , 2002 .

[21]  Michael Unser,et al.  Splines: a perfect fit for signal and image processing , 1999, IEEE Signal Process. Mag..

[22]  Zdeněk P. Bažant,et al.  Spurious reflection of elastic waves in nonuniform meshes of constant and linear strain unite elements , 1982 .

[23]  S. Goedecker Wavelets and Their Application: For the Solution of Partial Differential Equations in Physics , 1998 .

[24]  M. Hutchinson,et al.  Smoothing noisy data with spline functions , 1985 .

[25]  John R. Williams,et al.  Introduction to wavelets in engineering , 1994 .

[26]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[27]  D. Boore,et al.  Finite Difference Methods for Seismic Wave Propagation in Heterogeneous Materials , 1972 .

[28]  George A. McMechan,et al.  Wave extrapolation in the spatial wavelet domain with application to poststack reverse-time migration , 1998 .

[29]  C. Reinsch Smoothing by spline functions. II , 1971 .

[30]  Jinchao Xu,et al.  Galerkin-wavelet methods for two-point boundary value problems , 1992 .

[31]  H. Yousefi,et al.  Multiresolution-Based Adaptive Simulation of Wave Equation , 2012 .

[32]  Kevin Amaratunga,et al.  Wavelet-Galerkin solution of boundary value problems , 1997 .

[33]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[34]  B. Kennett,et al.  On a wavelet-based method for the numerical simulation of wave propagation , 2002 .

[35]  Johan Waldén,et al.  Adaptive Wavelet Methods for Hyperbolic PDEs , 1998, J. Sci. Comput..

[36]  G. Beylkin On the representation of operators in bases of compactly supported wavelets , 1992 .

[37]  Leland Jameson,et al.  Wavelet Analysis and Ocean Modeling: A Dynamically Adaptive Numerical Method ''WOFD-AHO'' , 2000 .

[38]  George Pan,et al.  Wavelets in Electromagnetics and Device Modeling , 2003 .

[39]  Mani Mehra,et al.  Time‐accurate solution of advection–diffusion problems by wavelet‐Taylor–Galerkin method , 2005 .

[40]  Oleg V. Vasilyev,et al.  Simultaneous space-time adaptive wavelet solution of nonlinear parabolic differential equations , 2006, J. Comput. Phys..

[41]  I. Weinreich,et al.  Wavelet-Galerkin methods: An adapted biorthogonal wavelet basis , 1993 .

[42]  David L. Donoho,et al.  Interpolating Wavelet Transforms , 1992 .

[43]  John R. Williams,et al.  Wavelet–Galerkin solutions for one‐dimensional partial differential equations , 1994 .

[44]  Nail K. Yamaleev Minimization of the truncation error by grid adaptation , 1999 .

[45]  Fernão D. Magalhães,et al.  Wavelet‐based adaptive grid method for the resolution of nonlinear PDEs , 2002 .

[46]  S. Mallat A wavelet tour of signal processing , 1998 .

[47]  Gregory Beylkin,et al.  On the Adaptive Numerical Solution of Nonlinear Partial Differential Equations in Wavelet Bases , 1997 .

[48]  J. M. Keiser,et al.  A New Class of Time Discretization Schemes for the Solution of Nonlinear PDEs , 1998 .

[49]  Adaptive wavelet-based finite-difference modelling of SH-wave propagation , 2002 .

[50]  J. Kristek,et al.  The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion , 2007 .

[51]  A. Mendes,et al.  Adaptive multiresolution approach for two-dimensional PDEs , 2004 .

[52]  James S. Sochacki,et al.  Absorbing boundary conditions and surface waves , 1987 .

[53]  B. Kennett,et al.  Modelling of seismic waves in heterogeneous media using a wavelet-based method: application to fault and subduction zones , 2003 .

[54]  Sam Qian,et al.  Wavelets and the numerical solution of boundary value problems , 1993 .

[55]  D. Gottlieb,et al.  Spectral methods for hyperbolic problems , 2001 .

[56]  Angela Kunoth,et al.  An adaptive wavelet viscosity method for hyperbolic conservation laws , 2008 .

[57]  Siegfried Müller,et al.  Fully Adaptive Multiscale Schemes for Conservation Laws Employing Locally Varying Time Stepping , 2007, J. Sci. Comput..

[58]  G. Wei,et al.  Conjugate filter approach for solving Burgers' equation , 2002 .

[59]  Richard Grotjahn,et al.  Some Inaccuracies in Finite Differencing Hyperbolic Equations , 1976 .

[60]  Y. Kim,et al.  Adaptive multiscale wavelet-Galerkin analysis for plane elasticity problems and its applications to multiscale topology design optimization , 2003 .

[62]  Treatment of Boundary Conditions in the Application of Wavelet-Galerkin Method to an SH Wave Problem , 1997 .

[63]  M. Mehra,et al.  Wavelet-Taylor Galerkin Method for the Burgers Equation , 2005 .

[64]  Gregory Beylkin,et al.  LU Factorization of Non-standard Forms and Direct Multiresolution Solvers , 1998 .

[65]  Z. Bažant,et al.  SPURIOUS REFLECTION OF ELASTIC WAVES IN NONUNIFORM FINITE ELEMENT GRIDS , 1978 .

[66]  Wim Sweldens,et al.  An Overview of Wavelet Based Multiresolution Analyses , 1994, SIAM Rev..

[67]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[68]  Robert Vichnevetsky,et al.  Wave propagation analysis of difference schemes for hyperbolic equations: A review , 1987 .

[69]  L. Trefethen Group velocity in finite difference schemes , 1981 .

[70]  Thomas C.M. Lee Improved smoothing spline regression by combining estimates of different smoothness , 2004 .

[71]  D. Ragozin Error bounds for derivative estimates based on spline smoothing of exact or noisy data , 1983 .

[72]  Michael Griebel,et al.  Adaptive Wavelet Solvers for the Unsteady Incompressible Navier-Stokes Equations , 2000 .

[73]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[74]  The finite-difference method for seismologists ; an introduction , 2004 .

[75]  Robert Vichnevetsky,et al.  Propagation through numerical mesh refinement for hyperbolic equations , 1981 .

[76]  Wim Sweldens,et al.  Building your own wavelets at home , 2000 .

[77]  Albert Cohen,et al.  Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..

[78]  Difference and finite element methods for hyperbolic differential equations , 1979 .

[79]  Fernão D. Magalhães,et al.  Using wavelets for solving PDEs: an adaptive collocation method , 2001 .

[80]  B. Kennett,et al.  Scattering Attenuation of 2D Elastic Waves: Theory and Numerical Modeling Using a Wavelet-Based Method , 2003 .

[81]  Mira Mitra,et al.  Wavelet Methods for Dynamical Problems: With Application to Metallic, Composite, and Nano-Composite Structures , 2010 .

[82]  J. S. C. Prentice Truncation and roundoff errors in three-point approximations of first and second derivatives , 2011, Appl. Math. Comput..

[83]  Thomas C. M. Lee,et al.  Smoothing parameter selection for smoothing splines: a simulation study , 2003, Comput. Stat. Data Anal..

[84]  Mani Mehra,et al.  Fast wavelet-Taylor Galerkin method for linear and non-linear wave problems , 2007, Appl. Math. Comput..

[85]  Jianzhong Wang,et al.  Adaptive multiresolution collocation methods for initial boundary value problems of nonlinear PDEs , 1996 .

[86]  Mats Holmström,et al.  Solving Hyperbolic PDEs Using Interpolating Wavelets , 1999, SIAM J. Sci. Comput..

[87]  Gang-Won Jang,et al.  Multiscale Galerkin method using interpolation wavelets for two‐dimensional elliptic problems in general domains , 2004 .

[88]  Nicholas K.-R. Kevlahan,et al.  An adaptive multilevel wavelet collocation method for elliptic problems , 2005 .