Thermodynamic calculation and an experimental study of the combustion synthesis of (Mo1−xNbx)Si2 (0 ⩽ x ⩽ 1)

[1]  Xiaohong Wang,et al.  Combustion synthesis of (Mo1 − xCrx)Si2 (x = 0.00–0.30) alloys in SHS mode , 2012 .

[2]  P. Masset,et al.  A thermodynamic description of the Al–Mo–Si system , 2012 .

[3]  F. Luo,et al.  Effect of MoSi2 content on dielectric and mechanical properties of MoSi2/Al2O3 composite coatings , 2012 .

[4]  D. Kondepudi,et al.  Combustion synthesis of MoSi2 and MoSi2–Mo5Si3 composites: Multilayer modeling and control of the microstructure , 2010 .

[5]  Changrong Li,et al.  Experimental study on the as-cast solidification of the Si-rich alloys of the Nb–Si–Mo ternary system , 2010 .

[6]  K. Hagihara,et al.  Improvement of aligned lamellar structure by Cr-addition to NbSi2/MoSi2 duplex–silicide crystals , 2010 .

[7]  J. Perepezko The Hotter the Engine, the Better , 2009, Science.

[8]  W. Chen,et al.  Combustion synthesis of MoSi2 and MoSi2–Mo5Si3 composites , 2007 .

[9]  Jianguang Xu,et al.  Effect of argon atmosphere on the formation of MoSi2 by self-propagating combustion method , 2007 .

[10]  W. Jiansheng,et al.  A Comparison of the Oxidation Behaviors of Poly-Crystalline and Single Crystalline NbSi2 at 1023 K , 2005 .

[11]  R. Khanna,et al.  Microstructure, mechanical properties and oxidation behavior of a multiphase (Mo,Cr)(Si,Al)2 intermetallic alloy–SiC composite processed by reaction hot pressing , 2004 .

[12]  T. Mitchell,et al.  Deformation mechanisms of polycrystalline MoSi2 alloyed with 1 at.% Nb , 2003 .

[13]  Z. A. Munir,et al.  Self-propagating high-temperature synthesis microalloying of MoSi_2 with Nb and V , 2003 .

[14]  A. Heron,et al.  Mechanical alloying of MoSi2 with ternary alloying elements. Part 1: Experimental , 2003 .

[15]  W. Fang,et al.  Effect of Mg addition on the microstructure and mechanical properties of MoSi2 alloys , 2002 .

[16]  Yuelan Zhang,et al.  Thermodynamic assessment of the Nb-Ti system , 2001 .

[17]  J. Petrovic Toughening strategies for MoSi2-based high temperature structural silicides , 2000 .

[18]  E. Summers,et al.  Extrusion and selected engineering properties of Mo–Si–B intermetallics , 2000 .

[19]  E. Kaxiras,et al.  Microalloying for ductility in molybdenum disilicide , 1999 .

[20]  L. Yonghe,et al.  Thermodynamic analysis of the self-propagation high-temperature synthesis Al2O3/B4C composite , 1998 .

[21]  Y. Murata,et al.  Solid solution softening and hardening in alloyed MoSi2 , 1998 .

[22]  Yong-Seog Kim,et al.  On the formation of MoSi2 by self-propagating high-temperature synthesis , 1996 .

[23]  H. Feng,et al.  Combustion synthesis of advanced materials: Part II. Classification, applications and modelling , 1995 .

[24]  John J. Moore,et al.  Combustion synthesis of advanced materials: Part I. Reaction parameters , 1995 .

[25]  J. Tien,et al.  Materials for elevated-temperature applications , 1991 .

[26]  Z. A. Munir,et al.  Synthesis of molybdenum silicides by the self-propagating combustion method , 1991, Journal of Materials Science.

[27]  S. Deevi Self-propagating high-temperature synthesis of molybdenum disilicide , 1991 .

[28]  Z. A. Munir,et al.  Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion , 1989 .

[29]  J. Ågren,et al.  A regular solution model for phases with several components and sublattices, suitable for computer applications , 1981 .