Effect of support on metathesis of n-decane: drastic improvement in alkane metathesis with WMe5 linked to silica-alumina.

[WMe6 ] (1) supported on the surface of SiO2 -Al2 O3(500) (2) has been extensively characterized by solid-state NMR spectroscopy, elemental analysis, and gas quantification, which clearly reveal the formation of a mixture of monopodal and bipodal species with the migration of methyl from W to Al. The supported species SiO2 -Al2 O3(500) (2) transformed at 120 °C into two types of carbynic centers, one of which is cationic and the other neutral. These species are very efficient for the metathesis of n-decane. Comparison with already-synthesized neutral bipodal tungsten indicates that the high increase in activity is due to the cationic character of the grafted tungsten.

[1]  Manoja K. Samantaray,et al.  Striking difference between alkane and olefin metathesis using the well-defined precursor [Si–O–WMe5]: indirect evidence in favour of a bifunctional catalyst W alkylidene–hydride , 2015 .

[2]  Manoja K. Samantaray,et al.  Cyclooctane metathesis catalyzed by silica-supported tungsten pentamethyl [(≡SiO)W(Me)5]: distribution of macrocyclic alkanes. , 2014, Chemistry.

[3]  Manoja K. Samantaray,et al.  WMe6 tamed by silica: ≡Si-O-WMe5 as an efficient, well-defined species for alkane metathesis, leading to the observation of a supported W-methyl/methylidyne species. , 2014, Journal of the American Chemical Society.

[4]  D. Block,et al.  Catalytic Conversion of Furan to Gasoline-Range Aliphatic Hydrocarbons via Ring Opening and Decarbonylation Reactions Catalyzed by Pt/γ-Al2O3 , 2012, Catalysis Letters.

[5]  J. Čejka,et al.  Mesoporous Molecular Sieves as Advanced Supports for Olefin Metathesis Catalysts , 2010 .

[6]  C. Copéret,et al.  Metathesis of alkanes and related reactions. , 2010, Accounts of chemical research.

[7]  Zheng Huang,et al.  Efficient Heterogeneous Dual Catalyst Systems for Alkane Metathesis , 2010 .

[8]  S. Norsic,et al.  Surface Organometallic Chemistry of Titanium on Silica−Alumina and Catalytic Hydrogenolysis of Waxes at Low Temperature , 2009 .

[9]  Chen Zhao,et al.  Highly selective catalytic conversion of phenolic bio-oil to alkanes. , 2009, Angewandte Chemie.

[10]  Christophe Copéret,et al.  Understanding d(0)-olefin metathesis catalysts: which metal, which ligands? , 2007, Journal of the American Chemical Society.

[11]  Glenn J. Sunley,et al.  Silica‐Alumina‐Supported, Tungsten‐Based Heterogeneous Alkane Metathesis Catalyst: Is it Closer to a Silica‐ or an Alumina‐Supported System? , 2007 .

[12]  G. Coates,et al.  Living alkene polymerization : New methods for the precision synthesis of polyolefins , 2007 .

[13]  A. Vimont,et al.  Nature, structure and strength of the acidic sites of amorphous silica alumina: an IR and NMR study. , 2006, The journal of physical chemistry. B.

[14]  Philippe Sautet,et al.  Molecular understanding of alumina supported single-site catalysts by a combination of experiment and theory. , 2006, Journal of the American Chemical Society.

[15]  Amy H. Roy,et al.  Catalytic Alkane Metathesis by Tandem Alkane Dehydrogenation-Olefin Metathesis , 2006, Science.

[16]  Glenn J. Sunley,et al.  Development of tungsten-based heterogeneous alkane metathesis catalysts through a structure-activity relationship. , 2005, Angewandte Chemie.

[17]  C. Copéret,et al.  Molecular Understanding of the Formation of Surface Zirconium Hydrides upon Thermal Treatment under Hydrogen of [(=SiO)Zr(CH 2 tBU) 3 ] by Using Advanced Solid-State NMR Techniques , 2004 .

[18]  Jean-Marie Basset,et al.  Homogene und heterogene Katalyse – Brückenschlag durch Oberflächen‐Organometallchemie , 2003 .

[19]  C. Copéret,et al.  Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. , 2003, Angewandte Chemie.

[20]  T. Marks,et al.  High-resolution solid-state (13)C NMR studies of chemisorbed organometallics. Chemisorptive formation of cation-like and alkylidene organotantalum complexes on high surface area inorganic oxides. , 2002, Journal of the American Chemical Society.

[21]  J. Bercaw,et al.  Understanding and exploiting C–H bond activation , 2002, Nature.

[22]  K. Seppelt,et al.  Preparation and Structures of [W(CH3)6], [Re(CH3)6], [Nb(CH3)6]−, and [Ta(CH3)6]− , 1998 .

[23]  J. Basset,et al.  Metathesis of Alkanes Catalyzed by Silica-Supported Transition Metal Hydrides , 1997, Science.

[24]  C. Fernandez,et al.  27Al MAS NMR characterization of AlPO4-14. Enhanced resolution and information by MQMAS. Dr. Hellmut G. Karge on the occasion of his 65th birthday. , 1996 .

[25]  K. Seppelt Response: Structure of W(CH3)6. , 1996, Science.

[26]  J. Lercher,et al.  Monomolecular conversion of light alkanes over H-ZSM-5 , 1995 .

[27]  C. Fernandez,et al.  2D multiquantum MAS-NMR spectroscopy of 27Al in aluminophosphate molecular sieves , 1995 .

[28]  D. Demco,et al.  Dipolar Heteronuclear Multiple-Quantum NMR Spectroscopy in Rotating Solids , 1995 .

[29]  T. Marks,et al.  Supported organoactinide complexes as heterogeneous catalysts. A kinetic and mechanistic study of facile arene hydrogenation , 1992 .

[30]  T. Marks Surface-bound metal hydrocarbyls. Organometallic connections between heterogeneous and homogeneous catalysis , 1992 .

[31]  G. Wilkinson,et al.  New synthesis of hexamethyltungsten(VI); hexamethylrhenium(VI) and dioxotrimethylrh enium(VII) , 1975 .

[32]  T. R. Hughes,et al.  Mechanism and poisoning of the molecular redistribution reaction of alkanes with a dual-functional catalyst system , 1973 .

[33]  Par Jean‐Louis Hérisson,et al.  Catalyse de transformation des oléfines par les complexes du tungstène. II. Télomérisation des oléfines cycliques en présence d'oléfines acycliques , 1971 .