A - Lower Bound for the Rank of - Matrix Multiplication over Arbitrary Fields
暂无分享,去创建一个
[1] K. Ramachandra,et al. Vermeidung von Divisionen. , 1973 .
[2] David P. Dobkin,et al. On the optimal evaluation of a set of bilinear forms , 1978 .
[3] Hans F. de Groote. On Varieties of Optimal Algorithms for the Computation of Bilinear Mappings I. The Isotropy Group of a Bilinear Mapping , 1978, Theor. Comput. Sci..
[4] Volker Strassen,et al. On the Algorithmic Complexity of Associative Algebras , 1981, Theor. Comput. Sci..
[5] V. Strassen. Rank and optimal computation of generic tensors , 1983 .
[6] Jacques Morgenstern,et al. On associative algebras of minimal rank , 1984, International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes.
[7] Hans F. de Groote. Lectures on the Complexity of Bilinear Problems , 1987, Lecture Notes in Computer Science.
[8] Nader H. Bshouty. A Lower Bound for Matrix Multiplication , 1989, SIAM J. Comput..
[9] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[10] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[11] Markus Bläser. Lower bounds for the multiplicative complexity of matrix multiplication , 1999, computational complexity.