Existence and Uniqueness of Traveling Waves for Fully Overdamped Frenkel–Kontorova Models

In this article, we study the existence and the uniqueness of traveling waves for a discrete reaction–diffusion equation with bistable nonlinearity, namely a generalization of the fully overdamped Frenkel–Kontorova model. This model consists of a system of ODEs which describes the dynamics of crystal defects in lattice solids. Under very weak assumptions, we prove the existence of a traveling wave solution and the uniqueness of the velocity of propagation of this traveling wave. The question of the uniqueness of the profile is also studied by proving Strong Maximum Principle or some weak asymptotics on the profile at infinity.

[1]  Jerome A. Goldstein,et al.  Partial Differential Equations and Related Topics , 1975 .

[2]  D. Aronson,et al.  Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation , 1975 .

[3]  Yuri S. Kivshar,et al.  The Frenkel-Kontorova Model , 2004 .

[4]  B. Zinner,et al.  Existence of traveling wavefront solutions for the discrete Nagumo equation , 1992 .

[5]  Xinfu Chen,et al.  Traveling Waves of Bistable Dynamics on a Lattice , 2003, SIAM J. Math. Anal..

[6]  Errico Presutti,et al.  Travelling fronts in non-local evolution equations , 1995 .

[7]  Christopher E. Elmer,et al.  A Variant of Newton's Method for the Computation of Traveling Waves of Bistable Differential-Difference Equations , 2002 .

[8]  Régis Monneau,et al.  Homogenization of fully overdamped Frenkel-Kontorova models , 2009 .

[9]  D. Hankerson,et al.  Wavefronts for a cooperative tridiagonal system of differential equations , 1993 .

[10]  Shui-Nee Chow,et al.  Traveling Waves in Lattice Dynamical Systems , 1998 .

[11]  Xinfu Chen,et al.  Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations , 1997, Advances in Differential Equations.

[12]  Xingfu Zou,et al.  Asymptotic and Periodic Boundary Value Problems of Mixed FDEs and Wave Solutions of Lattice Differential Equations , 1997 .

[13]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[14]  Henri Berestycki,et al.  Front propagation in periodic excitable media , 2002 .

[15]  Henri Berestycki,et al.  Traveling Wave Solutions to Combustion Models and Their Singular Limits , 1985 .

[16]  B. Zinner,et al.  Traveling wavefronts for the discrete Fisher's equation , 1993 .

[17]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[18]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .

[19]  S. P. Hastings,et al.  Wave solutions for a discrete reaction-diffusion equation , 2000, European Journal of Applied Mathematics.

[20]  L. Peletier,et al.  Nonlinear diffusion in population genetics , 1977 .

[21]  J. McLeod,et al.  The approach of solutions of nonlinear diffusion equations to travelling front solutions , 1977 .

[22]  Yuri S. Kivshar,et al.  The Frenkel-Kontorova Model: Concepts, Methods, and Applications , 2004 .

[23]  Da-Xue Chen,et al.  Forced oscillation of certain fractional differential equations , 2013 .

[24]  Xinfu Chen,et al.  Traveling Waves in Discrete Periodic Media for Bistable Dynamics , 2008 .

[25]  John Mallet-Paret,et al.  The Global Structure of Traveling Waves in Spatially Discrete Dynamical Systems , 1999 .

[26]  Jong-Shenq Guo,et al.  Traveling wave solution for a lattice dynamical system withconvolution type nonlinearity , 2011 .

[27]  P. Bates,et al.  Traveling Waves in a Convolution Model for Phase Transitions , 1997 .

[28]  John Mallet-Paret,et al.  The Fredholm Alternative for Functional Differential Equations of Mixed Type , 1999 .