Analysis of Manufacturing Process Sequences, Using Machine Learning on Intermediate Product States (as Process Proxy Data)

[1]  Klaus-Dieter Thoben,et al.  Exploitation of Material Property Potentials to Reduce Rare Raw Material Waste A Product State Based Concept for Manufacturing Process Improvement , 2012 .

[2]  Klaus-Dieter Thoben,et al.  Product state based view and machine learning: A suitable approach to increase quality? , 2012 .

[3]  Klaus-Dieter Thoben,et al.  Method to describe interdependencies of state characteristics related to distortion , 2012 .

[4]  B. Šarler,et al.  Application of the Genetic Programming for Increasing the Soft Annealing Productivity in Steel Industry , 2009 .

[5]  Boris Mirkin,et al.  Clustering For Data Mining: A Data Recovery Approach (Chapman & Hall/Crc Computer Science) , 2005 .

[6]  R. Staal Qualitätsmanagement – Strategien, Methoden, Techniken. Von T. Pfeifer. Carl Hanser-Verlag, München 1993. 512 S., mit 294 Abb. und 7 Tab., geb., DM 78,–. , 1994 .

[7]  K. GovilS.,et al.  Globalization of Markets , 2013 .

[8]  Klaus-Dieter Thoben,et al.  State of steel products in industrial production processes , 2011 .

[9]  Marcus Seifert,et al.  Unterstützung der Konsortialbildung in Virtuellen Organisationen durch prospektives Performance Measurement , 2007 .

[10]  Ekbert Hering,et al.  Qualitätsmanagement für Ingenieure , 1999 .

[11]  Daniel R. Krause,et al.  Supplier Partnerships in Manufacturing Versus Non‐Manufacturing Firms , 1994 .

[12]  C. Prahalad,et al.  The Core Competence of the Corporation , 1990 .

[13]  C. Prahalad,et al.  The core competence of the corporation’, Harvard Business Review, Vol. pp. . , 1990 .