Microstructure, mechanical, corrosion properties and cytotoxicity of beta‑calcium polyphosphate reinforced ZK61 magnesium alloy composite by spark plasma sintering.

[1]  Y. Huang,et al.  Fabrication and characterization of a biodegradable Mg-2Zn-0.5Ca/1β-TCP composite. , 2015, Materials science & engineering. C, Materials for biological applications.

[2]  P. Roth,et al.  β-Tricalcium phosphate for bone replacement: stability and integration in sheep. , 2015, Journal of biomechanics.

[3]  Zhigang Xu,et al.  Recent advances on the development of magnesium alloys for biodegradable implants. , 2014, Acta biomaterialia.

[4]  L. Dong,et al.  Microstructure, mechanical property and corrosion behavior of co-continuous β-TCP/MgCa composite manufactured by suction casting , 2014 .

[5]  Yufeng Zheng,et al.  Microstructure and characteristics of interpenetrating β-TCP/Mg–Zn–Mn composite fabricated by suction casting , 2014 .

[6]  Yufeng Zheng,et al.  A review on in vitro corrosion performance test of biodegradable metallic materials , 2013 .

[7]  Chen Hui Cheng,et al.  Tricalcium phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone , 2013, The Indian journal of medical research.

[8]  Yufeng Zheng,et al.  Novel Magnesium Alloys Developed for Biomedical Application: A Review , 2013 .

[9]  A R Boccaccini,et al.  Biomedical coatings on magnesium alloys - a review. , 2012, Acta biomaterialia.

[10]  Lin Mao,et al.  Comparison of biodegradable behaviors of AZ31 and Mg–Nd–Zn–Zr alloys in Hank's physiological solution , 2012 .

[11]  S. Dorozhkin,et al.  Biphasic, triphasic and multiphasic calcium orthophosphates. , 2012, Acta biomaterialia.

[12]  Baoping Zhang,et al.  Preparation and characterization of a new biomedical Mg–Zn–Ca alloy , 2012 .

[13]  Baoping Zhang,et al.  Mechanical properties, degradation performance and cytotoxicity of Mg–Zn–Ca biomedical alloys with different compositions , 2011 .

[14]  Behzad Mehdikhani,et al.  Synthesis of nano-sized β-tricalcium phosphate via wet precipitation , 2011 .

[15]  Sergey V. Dorozhkin,et al.  Calcium Orthophosphates as Bioceramics: State of the Art , 2010, Journal of functional biomaterials.

[16]  D. Chappard,et al.  A non-steroidal anti-inflammatory drug (ketoprofen) does not delay beta-TCP bone graft healing. , 2010, Acta biomaterialia.

[17]  M. Leeflang,et al.  In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys , 2010, Journal of materials science. Materials in medicine.

[18]  Jianwei Xu,et al.  Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application. , 2010, Acta biomaterialia.

[19]  M. Wong,et al.  Stearic acid coating on magnesium for enhancing corrosion resistance in Hanks' solution , 2010 .

[20]  Qiuming Peng,et al.  Preparation and properties of high purity Mg-Y biomaterials. , 2010, Biomaterials.

[21]  Changsong Dai,et al.  Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid , 2009 .

[22]  J. Gray-Munro,et al.  Influence of surface modification on the in vitro corrosion rate of magnesium alloy AZ31. , 2009, Journal of biomedical materials research. Part A.

[23]  Ke Yang,et al.  Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application , 2009 .

[24]  P. Uggowitzer,et al.  On the biodegradation performance of an Mg-Y-RE alloy with various surface conditions in simulated body fluid. , 2009, Acta biomaterialia.

[25]  E. Han,et al.  Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application , 2008 .

[26]  R. Raman,et al.  In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. , 2008, Biomaterials.

[27]  R. Detsch,et al.  Formation of osteoclast-like cells on HA and TCP ceramics. , 2008, Acta biomaterialia.

[28]  A. Méndez-Vilas,et al.  In vitro biocompatibility of an ultrafine grained zirconium. , 2007, Biomaterials.

[29]  Guang-Ling Song,et al.  Control of biodegradation of biocompatable magnesium alloys , 2007 .

[30]  Philipp Beerbaum,et al.  Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. , 2006, Biomaterials.

[31]  Frank Witte,et al.  In vitro and in vivo corrosion measurements of magnesium alloys. , 2006, Biomaterials.

[32]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[33]  D. StJohn,et al.  Grain refinement of magnesium alloys , 2005 .

[34]  H. Haferkamp,et al.  In vivo corrosion of four magnesium alloys and the associated bone response. , 2005, Biomaterials.

[35]  G. Daculsi,et al.  A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. , 2005, Biomaterials.

[36]  C. R. Howlett,et al.  The Effect of Magnesium Ions on Bone Bonding to Hydroxyapatite Coating on Titanium Alloy Implants , 2003 .

[37]  Y Akagawa,et al.  Action of FGMgCO3Ap-collagen composite in promoting bone formation. , 2003, Biomaterials.

[38]  K. Tew,et al.  Trace elements in human physiology and pathology: zinc and metallothioneins. , 2003, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[39]  C. R. Howlett,et al.  Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. , 2002, Journal of biomedical materials research.

[40]  M. Okazaki,et al.  Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. , 2002, Journal of biomedical materials research.

[41]  G. Song,et al.  Corrosion mechanisms of magnesium alloys , 1999 .

[42]  B. Kasemo,et al.  Structure of the interface between rabbit cortical bone and implants of gold, zirconium and titanium , 1997, Journal of materials science. Materials in medicine.