Extended pathoanatomical studies point to a consistent affection of the thalamus in spinocerebellar ataxia type 2

The involvement of the thalamus during the course of the currently known polyglutamine diseases is still a matter of debate. While it is well‐known that this diencephalic nuclear complex undergoes neurodegeneration in some polyglutamine diseases such as Huntington's disease (HD), it has remained unclear whether and to what extent the thalamus is also involved in spinocerebellar ataxia type 2 (SCA2) patients. Encouraged by our recent post‐mortem findings in one German SCA2 patient and the results of a recent nuclear magnetic resonance (NMR) study, we extended our pathoanatomical analysis to serial thick sections stained for lipofuscin granules and Nissl substance through the thalami of four additional German and Cuban SCA2 patients. According to this analysis the thalamus is consistently affected by the destructive process of SCA2. In particular, during our study we observed a consistent involvement of the lateral geniculate body, the lateral posterior, ventral anterior, ventral lateral, ventral posterior lateral, and ventral posterior medial thalamic nuclei as well as the extraterritorial reticular nucleus. In four of the SCA2 cases studied additional damage was seen in the inferior and lateral nuclei of the pulvinar, whereas in the minority of the patients a subset of the limbic nuclei of the thalamus (i.e. anterodorsal, anteroprincipal, laterodorsal, fasciculosus, mediodorsal, central lateral, central medial, cucullar, and paracentral nuclei, medial nucleus of the pulvinar) underwent neurodegeneration. These interindividual differences in the distribution pattern of thalamic neurodegeneration indicate that the thalamic nuclei differ in their proclivities to degenerate in SCA2 and may suggest that they become involved at different phases in the evolution of the underlying degenerative process.

[1]  L. Schöls,et al.  Autosomal dominant cerebellar ataxia: Phenotypic differences in genetically defined subtypes? , 1997, Annals of neurology.

[2]  J. Dichgans,et al.  Cognitive deficits in spinocerebellar ataxia 2. , 1999, Brain : a journal of neurology.

[3]  I. Kanazawa,et al.  SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. , 2001, Human molecular genetics.

[4]  B. Libet,et al.  Somatosensory System , 1973, Handbook of Sensory Physiology.

[5]  刘春风,et al.  Hereditary ataxia , 2006 .

[6]  E. G. Jones,et al.  A new parcellation of the human thalamus on the basis of histochemical staining , 1989, Brain Research Reviews.

[7]  S. Pulst,et al.  SCA2 trinucleotide expansion in German SCA patients , 1997, Neurogenetics.

[8]  S. Petersen,et al.  The pulvinar and visual salience , 1992, Trends in Neurosciences.

[9]  C. Darian‐Smith,et al.  Thalamic projections to sensorimotor cortex in the macaque monkey: Use of multiple retrograde fluorescent tracers , 1990, The Journal of comparative neurology.

[10]  Igor A. Ilinsky,et al.  Limbic Thalamus: Structure, Intrinsic Organization, and Connections , 1993 .

[11]  Georg Auburger,et al.  Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies , 1999, Acta Neuropathologica.

[12]  H. Braak,et al.  The intralaminar nuclei assigned to the medial pain system and other components of this system are early and progressively affected by the Alzheimer's disease-related cytoskeletal pathology , 2002, Journal of Chemical Neuroanatomy.

[13]  R. Guillery,et al.  Paying attention to the thalamic reticular nucleus , 1998, Trends in Neurosciences.

[14]  G. Reifenberger,et al.  Anatomically based guidelines for systematic investigation of the central somatosensory system and their application to a spinocerebellar ataxia type 2 (SCA2) patient , 2003, Neuropathology and applied neurobiology.

[15]  Michael Schocke,et al.  Atrophy pattern in SCA2 determined by voxel-based morphometry , 2003, Neuroreport.

[16]  H. Zoghbi,et al.  Glutamine repeats and neurodegeneration. , 2000, Annual review of neuroscience.

[17]  E. Storey,et al.  Spinocerebellar ataxia type 2: clinical features of a pedigree displaying prominent frontal-executive dysfunction. , 1999, Archives of neurology.

[18]  S. Pulst,et al.  Spinocerebellar Ataxia Type 2: Genotype and Phenotype in German Kindreds , 1997 .

[19]  A. Spauschus,et al.  The molecular biology of the autosomal‐dominant cerebellar ataxias , 2000, Movement disorders : official journal of the Movement Disorder Society.

[20]  H. Groenewegen,et al.  The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei , 1994, Trends in Neurosciences.

[21]  H. Braak,et al.  Parkinson’s disease: the thalamic components of the limbic loop are severely impaired by α-synuclein immunopositive inclusion body pathology , 2002, Neurobiology of Aging.

[22]  K. Kultas‐Ilinsky,et al.  Reevaluation of the primary motor cortex connections with the thalamus in primates , 2003, The Journal of comparative neurology.

[23]  H. Paulson,et al.  Ataxia and hereditary disorders. , 2001, Neurologic clinics.

[24]  K. Grieve,et al.  The primate pulvinar nuclei: vision and action , 2000, Trends in Neurosciences.

[25]  M. Farrall,et al.  Autosomal dominant ataxia: genetic evidence for locus heterogeneity from a Cuban founder-effect population. , 1990, American journal of human genetics.

[26]  Georg Auburger,et al.  Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2 , 1996, Nature Genetics.

[27]  J. Fuster The Prefrontal Cortex—An Update Time Is of the Essence , 2001, Neuron.

[28]  H. Braak,et al.  Neuropathological stageing of Alzheimer-related changes , 2004, Acta Neuropathologica.

[29]  Í. Lopes-Cendes,et al.  The Neuropathology of CAG Repeat Diseases: Review and Update of Genetic and Molecular Features , 1997, Brain pathology.

[30]  S. Pulst,et al.  Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human , 2000, Nature Genetics.

[31]  J. Kaas,et al.  Thalamic connections of the primary motor cortex (M1) of owl monkeys , 1994, The Journal of comparative neurology.

[32]  H. Topka,et al.  Autosomal dominant cerebellar ataxia type I. Nerve conduction and evoked potential studies in families with SCA1, SCA2 and SCA3. , 1997, Brain : a journal of neurology.

[33]  G. Alheid 19 – Basal Ganglia , 1990 .

[34]  G. Caruso,et al.  Autosomal dominant cerebellar ataxia type I: multimodal electrophysiological study and comparison between SCA1 and SCA2 patients , 1996, Journal of the Neurological Sciences.

[35]  T. Uchihara,et al.  Autosomal dominant spinocerebellar degenerations. Clinical, pathological, and genetic correlations. , 1999, Revue neurologique.

[36]  H. Paulson Toward an Understanding of Polyglutamine Neurodegeneration , 2000, Brain pathology.

[37]  J. Kaas 24 – Somatosensory System , 1990 .

[38]  G. E. Alexander,et al.  Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. , 1990, Progress in brain research.

[39]  A Dürr,et al.  Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies). Clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families. , 1995, Brain : a journal of neurology.

[40]  H. Heinsen,et al.  Nerve cell loss in the thalamic mediodorsal nucleus in Huntington’s disease , 1999, Acta Neuropathologica.

[41]  H. Braak,et al.  Alzheimer's disease affects limbic nuclei of the thalamus , 2004, Acta Neuropathologica.

[42]  H. Braak,et al.  Involvement of precerebellar nuclei in multiple system atrophy , 2003, Neuropathology and applied neurobiology.

[43]  Y. Agid,et al.  Molecular and clinical correlations in spinocerebellar ataxia 2: a study of 32 families. , 1997, Human molecular genetics.

[44]  K. Kultas‐Ilinsky,et al.  Organization of projections from the anterior pole of the nucleus reticularis thalami (NRT) to subdivisions of the motor thalamus: Light and electron microscopic studies in the Rhesus monkey , 1999, The Journal of comparative neurology.

[45]  R. Wadia,et al.  The hereditary ataxias. , 1976, Neurology India.

[46]  C. Asanuma,et al.  Neurobiology of Cingulate Cortex and Limbic Thalamus edited by B. A. Vogt and M. Gabriel, Birkha¨user, 1993. $199.00 (639 pages) ISBN 0 8176 3568 8 , 1994, Trends in Neurosciences.

[47]  G. Reifenberger,et al.  Thalamic involvement in a spinocerebellar ataxia type 2 (SCA2) and a spinocerebellar ataxia type 3 (SCA3) patient, and its clinical relevance. , 2003, Brain : a journal of neurology.

[48]  G Mann,et al.  ON THE THALAMUS * , 1905, British medical journal.

[49]  H. Braak,et al.  A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads , 2004, Acta Neuropathologica.

[50]  J. Culvenor,et al.  α‐Synuclein Immunoisolation of Glial Inclusions from Multiple System Atrophy Brain Tissue Reveals Multiprotein Components , 1999, Journal of neurochemistry.

[51]  A. Morel,et al.  Multiarchitectonic and stereotactic atlas of the human thalamus , 1997, The Journal of comparative neurology.

[52]  Peter Redgrave,et al.  Basal Ganglia , 2020, Encyclopedia of Autism Spectrum Disorders.

[53]  G. Zappala,et al.  Cognitive findings in spinocerebellar ataxia type 2: relationship to genetic and clinical variables , 2002, Journal of the Neurological Sciences.

[54]  Lillian Martinian,et al.  Neuronal intranuclear inclusions in SCA2: a genetic, morphological and immunohistochemical study of two cases. , 2002, Brain : a journal of neurology.

[55]  Shintaro Funahashi,et al.  Neuronal mechanisms of executive control by the prefrontal cortex , 2001, Neuroscience Research.

[56]  C. T. White,et al.  Cortical and subcortical components of the pattern VEP. , 1983, International Journal of Neuroscience.

[57]  Yves Agid,et al.  Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats , 1996, Nature Genetics.