Device-to-Device Communications Underlaying Cellular Networks

In cellular networks, proximity users may communicate directly without going through the base station, which is called Device-to-device (D2D) communications and it can improve spectral efficiency. However, D2D communications may generate interference to the existing cellular networks if not designed properly. In this paper, we study a resource allocation problem to maximize the overall network throughput while guaranteeing the quality-of-service (QoS) requirements for both D2D users and regular cellular users (CUs). A three-step scheme is proposed. It first performs admission control and then allocates powers for each admissible D2D pair and its potential CU partners. Next, a maximum weight bipartite matching based scheme is developed to select a suitable CU partner for each admissible D2D pair to maximize the overall network throughput. Numerical results show that the proposed scheme can significantly improve the performance of the hybrid system in terms of D2D access rate and the overall network throughput. The performance of D2D communications depends on D2D user locations, cell radius, the numbers of active CUs and D2D pairs, and the maximum power constraint for the D2D pairs.

[1]  Olav Tirkkonen,et al.  Resource Sharing Optimization for Device-to-Device Communication Underlaying Cellular Networks , 2011, IEEE Transactions on Wireless Communications.

[2]  Sungsoo Park,et al.  Reliability Improvement Using Receive Mode Selection in the Device-to-Device Uplink Period Underlaying Cellular Networks , 2011, IEEE Transactions on Wireless Communications.

[3]  Visa Koivunen,et al.  Interference-Aware Resource Allocation for Device-to-Device Radio Underlaying Cellular Networks , 2009, VTC Spring 2009 - IEEE 69th Vehicular Technology Conference.

[4]  B. Aazhang,et al.  Cellular networks with an overlaid device to device network , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.

[5]  Sungsoo Park,et al.  Capacity Enhancement Using an Interference Limited Area for Device-to-Device Uplink Underlaying Cellular Networks , 2011, IEEE Transactions on Wireless Communications.

[6]  Carl Wijting,et al.  Device-to-device communication as an underlay to LTE-advanced networks , 2009, IEEE Communications Magazine.

[7]  Amr El-Keyi,et al.  Power Control for Constrained Throughput Maximization in Spectrum Shared Networks , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[8]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[9]  A. Gjendemsjo,et al.  Optimal Power Allocation and Scheduling for Two-Cell Capacity Maximization , 2006, 2006 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks.

[10]  Rajarathnam Chandramouli,et al.  Dynamic Spectrum Access with QoS and Interference Temperature Constraints , 2007, IEEE Transactions on Mobile Computing.

[11]  Petri Mähönen,et al.  Evaluation of Spectrum Occupancy in Indoor and Outdoor Scenario in the Context of Cognitive Radio , 2007, 2007 2nd International Conference on Cognitive Radio Oriented Wireless Networks and Communications.

[12]  N.D. Sidiropoulos,et al.  Convex Approximation-Based Joint Power and Admission Control for Cognitive Underlay Networks , 2008, 2008 International Wireless Communications and Mobile Computing Conference.

[13]  Bartlomiej Blaszczyszyn,et al.  Quality of Service in Wireless Cellular Networks Subject to Log-Normal Shadowing , 2013, IEEE Transactions on Communications.

[14]  Olav Tirkkonen,et al.  Device-to-Device Communication Underlaying Cellular Communications Systems , 2009, Int. J. Commun. Netw. Syst. Sci..

[15]  Ekram Hossain,et al.  Resource allocation for spectrum underlay in cognitive radio networks , 2008, IEEE Transactions on Wireless Communications.

[16]  Stefan Parkvall,et al.  Design aspects of network assisted device-to-device communications , 2012, IEEE Communications Magazine.

[17]  Ian F. Akyildiz,et al.  NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey , 2006, Comput. Networks.

[18]  Anand Srinivasan,et al.  Efficient resource allocation for device-to-device communication underlaying LTE network , 2010, 2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications.