The ALADIN System and its canonical model configurations AROME CY41T1 and ALARO CY40T1

Abstract. The ALADIN System is a numerical weather prediction (NWP) system developed by the international ALADIN consortium for operational weather forecasting and research purposes. It is based on a code that is shared with the global model IFS of the ECMWF and the ARPEGE model of Meteo-France. Today, this system can be used to provide a multitude of high-resolution limited-area model (LAM) configurations. A few configurations are thoroughly validated and prepared to be used for the operational weather forecasting in the 16 partner institutes of this consortium. These configurations are called the ALADIN canonical model configurations (CMCs). There are currently three CMCs: the ALADIN baseline CMC, the AROME CMC and the ALARO CMC. Other configurations are possible for research, such as process studies and climate simulations. The purpose of this paper is (i) to define the ALADIN System in relation to the global counterparts IFS and ARPEGE, (ii) to explain the notion of the CMCs, (iii) to document their most recent versions, and (iv) to illustrate the process of the validation and the porting of these configurations to the operational forecast suites of the partner institutes of the ALADIN consortium. This paper is restricted to the forecast model only; data assimilation techniques and postprocessing techniques are part of the ALADIN System but they are not discussed here.

[1]  John P. Boyd,et al.  Limited-area fourier spectral models and data analysis schemes : Windows, fourier extension, davies relaxation, and all that , 2005 .

[2]  R. Smith A scheme for predicting layer clouds and their water content in a general circulation model , 1990 .

[3]  Joël Stein,et al.  Verification of the French operational high‐resolution model AROME with the regional Brier probability score , 2015 .

[4]  Piet Termonia,et al.  Generalization and application of the flux-conservative thermodynamic equations in the AROME model of the ALADIN system , 2016 .

[5]  Evelyne Richard,et al.  Numerical simulations of three different MAP IOPs and the associated microphysical processes , 2006 .

[6]  Pierre Bénard,et al.  Importance of temporal symmetry in spatial discretization for geostrophic adjustment in semi‐implicit Z‐grid schemes , 2015 .

[7]  Martina Tudor,et al.  Use of high-resolution dynamical adaptation in operational suite and research impact studies , 2004 .

[8]  André Robert,et al.  An Implicit Formulation for Horizontal Diffusion in Gridpoint Models , 1992 .

[9]  J. Curry,et al.  A parameterization of ice cloud optical properties for climate models , 1992 .

[10]  V. Masson,et al.  The AROME-France Convective-Scale Operational Model , 2011 .

[11]  Walter Zwieflhofer,et al.  Developments in teracomputing : proceedings of the Ninth ECMWF Workshop on the Use of High Performance Computing in Meteorology : Reading, UK, November 13-17, 2000 , 2001 .

[12]  V. Canuto,et al.  Non-local ocean mixing model and a new plume model for deep convection , 2007 .

[13]  M. Déqué,et al.  The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling , 1994 .

[14]  H. Davies,et al.  A lateral boundary formulation for multi-level prediction models. [numerical weather forecasting , 1976 .

[15]  Piet Termonia,et al.  Application of Boyd’s Periodization and Relaxation Method in a Spectral Atmospheric Limited-Area Model. Part I: Implementation and Reproducibility Tests , 2012 .

[16]  Sylvie Malardel,et al.  An alternative cell‐averaged departure point reconstruction for pointwise semi‐Lagrangian transport schemes , 2015 .

[17]  Jean-François Geleyn,et al.  Single interval shortwave radiation scheme with parameterized optical saturation and spectral overlaps , 2016 .

[18]  P. Bougeault,et al.  Cloud-Ensemble Relations Based on the Gamma Probability Distribution for the Higher-Order Models of the Planetary Boundary Layer , 1982 .

[19]  Eric Bazile,et al.  The Turbulent Kinetic Energy (TKE) scheme in the NWP models at Météo-France , 2012 .

[20]  Philippe Lopez,et al.  Implementation and validation of a new prognostic large‐scale cloud and precipitation scheme for climate and data‐assimilation purposes , 2002 .

[21]  E. Bazile,et al.  A mass‐flux convection scheme for regional and global models , 2001 .

[22]  P. Bougeault,et al.  A Simple Parameterization of the Large-Scale Effects of Cumulus Convection , 1985 .

[23]  Peter Bechtold,et al.  Modeling of Trade Wind Cumuli with a Low-Order Turbulence Model: Toward a Unified Description of Cu and Se Clouds in Meteorological Models , 1995 .

[24]  Piet Termonia,et al.  Validation of the ALARO-0 model within the EURO-CORDEX framework , 2015 .

[25]  Olivier Dupont,et al.  AROME–NWC: a new nowcasting tool based on an operational mesoscale forecasting system , 2015 .

[26]  Yong Wang,et al.  On the Impact of the Choice of Global Ensemble in Forcing a Regional Ensemble System , 2016 .

[27]  R. Treadon,et al.  A Tutorial on Lateral Boundary Conditions as a Basic and Potentially Serious Limitation to Regional Numerical Weather Prediction , 1997 .

[28]  T. Haiden,et al.  The Integrated Nowcasting through Comprehensive Analysis (INCA) System and Its Validation over the Eastern Alpine Region , 2011 .

[29]  H. Charnock Wind stress on a water surface , 1955 .

[30]  Sylvie Malardel,et al.  A Parameterization of Dry Thermals and Shallow Cumuli for Mesoscale Numerical Weather Prediction , 2009 .

[31]  Samuel Somot,et al.  Analysis of heavy precipitation for France using high resolution ALADIN RCM simulations , 2008 .

[32]  Peter Lynch,et al.  The Dolph-Chebyshev Window: A Simple Optimal Filter , 1997 .

[33]  Kuo-Nan Liou,et al.  Ice microphysics and climatic temperature feedback , 1995 .

[34]  P. Bénard,et al.  Flux-conservative thermodynamic equations in a mass-weighted framework , 2007 .

[35]  Yong Wang,et al.  A strategy for perturbing surface initial conditions in LAMEPS , 2010 .

[36]  Laure Raynaud,et al.  Comparison of initial perturbation methods for ensemble prediction at convective scale , 2016 .

[37]  V. Canuto,et al.  An Improved Model for the Turbulent PBL , 2002 .

[38]  Olivier Caumont,et al.  Operational Implementation of the 1D+3D-Var Assimilation Method of Radar Reflectivity Data in the AROME Model , 2014 .

[39]  Jean-Pierre Pinty,et al.  LIMA (v1.0): A quasi two-moment microphysical scheme driven by a multimodal population of cloud condensation and ice freezing nuclei , 2016 .

[40]  George L. Mellor,et al.  Analytic Prediction of the Properties of Stratified Planetary Surface Layers , 1973 .

[41]  Jean-François Geleyn,et al.  A New Method for Generating Initial Condition Perturbations in a Regional Ensemble Prediction System: Blending , 2014 .

[42]  Yong Wang,et al.  The Central European limited‐area ensemble forecasting system: ALADIN‐LAEF , 2011 .

[43]  Huw C. Davies,et al.  Limitations of Some Common Lateral Boundary Schemes used in Regional NWP Models , 1983 .

[44]  Iwan Holleman,et al.  Uncertainties in radar echo top heights used for hail detection , 2006 .

[45]  Igor Esau,et al.  Stably Stratified Flows: A Model with No Ri(cr)* , 2008 .

[46]  S. Planton,et al.  A Simple Parameterization of Land Surface Processes for Meteorological Models , 1989 .

[47]  Martina Tudor,et al.  The case study of bura of 1st and 3rd February 2007 , 2010 .

[48]  René Laprise,et al.  The Euler Equations of Motion with Hydrostatic Pressure as an Independent Variable , 1992 .

[49]  Semion Sukoriansky,et al.  A quasinormal scale elimination model of turbulent flows with stable stratification , 2005 .

[50]  Jean Coiffier,et al.  Fundamentals of Numerical Weather Prediction , 2011 .

[51]  Piet Termonia Scale-Selective Digital-Filtering Initialization , 2008 .

[52]  Jan Erik Haugen,et al.  A Spectral Limited-Area Model Formulation with Time-dependent Boundary Conditions Applied to the Shallow-Water Equations , 1993 .

[53]  T. Elperin,et al.  A Hierarchy of Energy- and Flux-Budget (EFB) Turbulence Closure Models for Stably-Stratified Geophysical Flows , 2011, Boundary-Layer Meteorology.

[54]  Jean-François Geleyn,et al.  An Approach for Convective Parameterization with Memory: Separating Microphysics and Transport in Grid-Scale Equations , 2007 .

[55]  Yong Wang,et al.  Validation of Strategies using Clustering Analysis of ECMWF EPS for Initial Perturbations in a Limited Area Model Ensemble Prediction System , 2013 .

[56]  Piet Termonia,et al.  Predicting Small-Scale, Short-Lived Downbursts: Case Study with the NWP Limited-Area ALARO Model for the Pukkelpop Thunderstorm , 2015 .

[57]  J. Guérémy,et al.  A continuous buoyancy based convection scheme: one-and three-dimensional validation , 2011 .

[58]  A. Simmons,et al.  An Energy and Angular-Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates , 1981 .

[59]  J. Morcrette,et al.  The Surface Longwave Radiation in the ECMWF Forecast System , 2002 .

[60]  Piet Termonia,et al.  Evaluating the performance of SURFEXv5 as a new land surface scheme for the ALADINcy36 and ALARO-0 models , 2013 .

[61]  Mariano Hortal,et al.  A finite‐element scheme for the vertical discretization of the semi‐Lagrangian version of the ECMWF forecast model , 2004 .

[62]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[63]  David J. Harding,et al.  Evaluation of the Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) using ICESat geodetic control , 2011, International Symposium on Lidar and Radar Mapping Technologies.

[64]  Jozef Vivoda,et al.  Stability of Leapfrog Constant-Coefficients Semi-Implicit Schemes for the Fully Elastic System of Euler Equations: Flat-Terrain Case , 2004 .

[65]  Laure Raynaud,et al.  Sensitivity of the AROME ensemble to initial and surface perturbations during HyMeX , 2016 .

[66]  D. Ricard,et al.  Kinetic energy spectra characteristics of two convection‐permitting limited‐area models AROME and Meso‐NH , 2013 .

[67]  D. Randall,et al.  A Semiempirical Cloudiness Parameterization for Use in Climate Models , 1996 .

[68]  J. C. H. van der Hage,et al.  A parameterization of the Wegener-Bergeron-Findeisen effect , 1995 .

[69]  Pierre Bénard,et al.  Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin NWP system , 1995 .

[70]  G. Mellor,et al.  Development of a turbulence closure model for geophysical fluid problems , 1982 .

[71]  Philippe Courtier,et al.  A global numerical weather prediction model with variable resolution: Application to the shallow‐water equations , 1988 .

[72]  Robin J. Hogan,et al.  Deriving cloud overlap statistics from radar , 2000 .

[73]  G. Mellor,et al.  A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers. , 1974 .

[74]  Piet Termonia,et al.  Improving the Temporal Resolution Problem by Localized Gridpoint Nudging in Regional Weather and Climate Models , 2011 .

[75]  Pierre Bénard,et al.  Dynamical kernel of the Aladin–NH spectral limited‐area model: Revised formulation and sensitivity experiments , 2010 .

[76]  S. Ştefănescu,et al.  An overview of the variational assimilation in the ALADIN/France numerical weather‐prediction system , 2005 .

[77]  Mats Hamrud,et al.  IMPLEMENTATION OF THE IFS ON A HIGHLY PARALLEL SCALAR SYSTEM , 2003 .

[78]  Branko Grisogono,et al.  A review of recent advances in understanding the meso‐ and microscale properties of the severe Bora wind , 2009 .

[79]  Pierre Bénard,et al.  Semi‐Lagrangian advection scheme with controlled damping: An alternative to nonlinear horizontal diffusion in a numerical weather prediction model , 2008 .

[80]  J. Redelsperger,et al.  A turbulence scheme allowing for mesoscale and large‐eddy simulations , 2000 .

[81]  J. F. Guérémy A continuous buoyancy based convection scheme: one- and three-dimensional validation , 2011 .

[82]  Pierre Benard,et al.  Stability of Semi-Implicit and Iterative Centered-Implicit Time Discretizations for Various Equation Systems Used in NWP , 2003, physics/0304114.

[83]  L. Gerard,et al.  Evolution of a subgrid deep convection parametrization in a limited‐area model with increasing resolution , 2005 .

[84]  Mian Chin,et al.  Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results , 1997 .

[85]  Hannu Savijärvi,et al.  Parametrization of orographic effects on surface radiation in HIRLAM , 2007 .

[86]  Piet Termonia,et al.  Study of the Lateral Boundary Condition Temporal Resolution Problem and a Proposed Solution by Means of Boundary Error Restarts , 2009 .

[87]  Clive Temperton,et al.  A two‐time‐level semi‐Lagrangian global spectral model , 2001 .

[88]  D. Ricard,et al.  Improvement of the forecast of convective activity from the AROME‐France system , 2016 .

[89]  Jure Cedilnik,et al.  A new sub-grid scale lift formulation in a mountain drag parameterisation scheme , 2008 .

[90]  R. Lacaze,et al.  A Global Database of Land Surface Parameters at 1-km Resolution in Meteorological and Climate Models , 2003 .

[91]  J. Geleyn,et al.  Cloud and Precipitation Parameterization in a Meso-Gamma-Scale Operational Weather Prediction Model , 2009 .

[92]  Jean-François Geleyn,et al.  Single interval longwave radiation scheme based on the net exchanged rate decomposition with bracketing , 2017 .

[93]  Dongmin Lee,et al.  Radiative impacts of cloud heterogeneity and overlap in an atmospheric General Circulation Model , 2012 .

[94]  Valéry Masson,et al.  A Physically-Based Scheme For The Urban Energy Budget In Atmospheric Models , 2000 .

[95]  Peter Lynch,et al.  Improving the efficiency of a digital filtering scheme for diabatic initialization , 1997 .

[96]  Alina Barbu,et al.  The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes , 2012 .

[97]  B. Ritter,et al.  A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations , 1992 .

[98]  A. Simmons,et al.  Implementation of the Semi-Lagrangian Method in a High-Resolution Version of the ECMWF Forecast Model , 1995 .

[99]  J. Colin,et al.  Sensitivity study of heavy precipitation in Limited Area Model climate simulations : influence of the size of the domain and the use of the spectral nudging technique , 2011 .

[100]  Véronique Ducrocq,et al.  The Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and control simulations , 1997 .

[101]  Vivek Hardiker,et al.  A Global Numerical Weather Prediction Model with Variable Resolution , 1997 .

[102]  D. W. Johnson,et al.  The Measurement and Parameterization of Effective Radius of Droplets in Warm Stratocumulus Clouds , 1994 .

[103]  L. Gérard Bulk Mass-Flux Perturbation Formulation for a Unified Approach of Deep Convection at High Resolution , 2015 .

[104]  Lisa Bengtsson,et al.  The HARMONIE-AROME Model Configuration in the ALADIN-HIRLAM NWP System , 2017 .

[105]  Yong Wang,et al.  On the forecast skill of a convection-permitting ensemble , 2016 .

[106]  Jimy Dudhia,et al.  Exploring the convective grey zone with regional simulations of a cold air outbreak , 2017 .

[107]  Martina Tudor Methods for automatized detection of rapid changes in lateral boundary condition fields for NWP limited area models , 2015 .

[108]  W. Collins,et al.  Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models , 2008 .

[109]  P. Termonia,et al.  Multiscale Performance of the ALARO-0 Model for Simulating Extreme Summer Precipitation Climatology in Belgium , 2013 .

[110]  Pierre Bénard,et al.  Stability of Leapfrog Constant-Coefficients Semi-Implicit Schemes for the Fully Elastic System of Euler Equations: Case with Orography , 2005 .

[111]  Piet Termonia,et al.  Application of Boyd’s Periodization and Relaxation Method in a Spectral Atmospheric Limited-Area Model. Part II: Accuracy Analysis and Detailed Study of the Operational Impact , 2012 .

[112]  David Burridge,et al.  Stability of the Semi-Implicit Method of Time Integration , 1978 .

[113]  J. Kain,et al.  A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization , 1990 .

[114]  Raluca Radu,et al.  Sensitivity study of heavy precipitation in Limited Area Model climate simulations: influence of the size of the domain and the use of the spectral nudging technique , 2010 .

[115]  Piet Termonia,et al.  Alternative Formulations for Incorporating Lateral Boundary Data into Limited-Area Models , 2010 .

[116]  Tom Henderson,et al.  AVEC Report: NGGPS Level-1 Benchmarks and Software Evaluation , 2015 .

[117]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[118]  Piet Termonia,et al.  Stability and accuracy of the physics—dynamics coupling in spectral models , 2007 .

[119]  P. Marquet,et al.  On a general definition of the squared Brunt–Väisälä frequency associated with the specific moist entropy potential temperature , 2014, 1401.2379.

[120]  Eric Bazile,et al.  Description of the sedimentation scheme used operationally in all Météo-France NWP models , 2011 .

[121]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[122]  Yong Wang,et al.  Perturbing Surface Initial Conditions in a Regional Ensemble Prediction System , 2016 .

[123]  Peter Bauer,et al.  The quiet revolution of numerical weather prediction , 2015, Nature.

[124]  A. Robert,et al.  An Implicit Time Integration Scheme for Baroclinic Models of the Atmosphere , 1972 .

[125]  Jean-François Geleyn,et al.  A Compact Model for the Stability Dependency of TKE Production–Destruction–Conversion Terms Valid for the Whole Range of Richardson Numbers , 2014 .

[126]  P. Lacarrére,et al.  Parameterization of Orography-Induced Turbulence in a Mesobeta--Scale Model , 1989 .

[127]  Piet Termonia,et al.  Monitoring the Coupling-Update Frequency of a Limited-Area Model by Means of a Recursive Digital Filter , 2004 .

[128]  G. Radnoti,et al.  Comments on “A Spectral Limited-Area Formulation with Time-Dependent Boundary Conditions Applied to the Shallow-Water Equations” , 1995 .

[129]  Jean-Jacques Morcrette,et al.  The Overlapping of Cloud Layers in Shortwave Radiation Parameterizations , 1986 .

[130]  João Paulo Teixeira,et al.  An eddy‐diffusivity/mass‐flux parametrization for dry and shallow cumulus convection , 2004 .

[131]  J. Geleyn,et al.  A statistical approach for sedimentation inside a microphysical precipitation scheme , 2008 .