Deterioration of irradiation resistance of ODS-F/M steel under high concentration of helium

[1]  Qunying Huang,et al.  Establishment of multi-beam irradiation facility at Wuhan University , 2022, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[2]  Zhiguang Wang,et al.  Comparison of helium bubble formation in F82H, ODS, SIMP and T91 steels irradiated by Fe and He ions simultaneously* , 2021, Chinese Physics B.

[3]  P. S. Dzhumaev,et al.  Bubble-to-void transition promoted by oxide nanoparticles in ODS-EUROFER steel ion implanted to high He content , 2020 .

[4]  P. Dou,et al.  Effects of contents of Al, Zr and Ti on oxide particles in Fe–15Cr–2W–0.35Y2O3 ODS steels , 2020 .

[5]  C. Zheng,et al.  Helium bubble nucleation and growth in alloy HT9 through the use of in situ TEM: Sequential he-implantation and heavy-ion irradiation versus dual-beam irradiation , 2020, Journal of Nuclear Materials.

[6]  T. Stan,et al.  Characterization of polyhedral nano-oxides and helium bubbles in an annealed nanostructured ferritic alloy , 2020, Acta Materialia.

[7]  J. Rams,et al.  Cavity formation and hardness change in He implanted EUROFER97 and EU-ODS EUROFER , 2020 .

[8]  S. Santra,et al.  Ion irradiation stability of oxide nano-particles in ODS alloys: TEM studies , 2020 .

[9]  K. Field,et al.  Emulation of fast reactor irradiated T91 using dual ion beam irradiation , 2019 .

[10]  M. Zdorovets,et al.  Helium in swift heavy ion irradiated ODS alloys , 2019 .

[11]  L. Shao,et al.  Effect of Helium on Dispersoid Evolution under Self-Ion Irradiation in A Dual-Phase 12Cr Oxide-Dispersion-Strengthened Alloy , 2019, Materials.

[12]  Zhiguang Wang,et al.  Evaluation of helium effect on irradiation hardening in F82H, ODS, SIMP and T91 steels by nano-indentation method , 2019, Fusion Engineering and Design.

[13]  K. Sridharan,et al.  Helium irradiation of Y O -Fe bilayer system , 2019, Scripta Materialia.

[14]  P. Song,et al.  Ion-irradiation hardening accompanied by irradiation-induced dissolution of oxides in FeCr(Y, Ti)-ODS ferritic steel , 2018, Journal of Nuclear Materials.

[15]  K. Field,et al.  Microstructure evolution of T91 irradiated in the BOR60 fast reactor , 2018, Journal of Nuclear Materials.

[16]  Meimei Li,et al.  Radiation resistance of oxide dispersion strengthened alloys: Perspectives from in situ observations and rate theory calculations , 2018 .

[17]  Jijun Zhao,et al.  Helium behavior in oxide dispersion strengthened (ODS) steel: Insights from ab initio modeling , 2018 .

[18]  J. Aktaa,et al.  Investigation of microstructure defects in EUROFER97 under He⁺/Fe³⁺ dual ion beam irradiation , 2018 .

[19]  C. Zheng,et al.  Radiation-induced swelling and radiation-induced segregation & precipitation in dual beam irradiated Ferritic/Martensitic HT9 steel , 2017 .

[20]  Zhiguang Wang,et al.  Evolution of vacancy-type defects and hardening behaviors of T91 induced by 1.625 MeV Fe-ions at different temperatures , 2017 .

[21]  A. Möslang,et al.  Effect of irradiation temperature on microstructure of ferritic-martensitic ODS steel , 2017 .

[22]  Steven J. Zinkle,et al.  Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications , 2017 .

[23]  K. Yano,et al.  A review of the irradiation evolution of dispersed oxide nanoparticles in the b.c.c. Fe-Cr system: Current understanding and future directions , 2017 .

[24]  Y. SUN 孙,et al.  Molecular dynamics simulations of cascade damage near the Y2Ti2O7 nanocluster/ferrite interface in nanostructured ferritic alloys , 2017 .

[25]  B. Hary,et al.  ODS-materials for high temperature applications in advanced nuclear systems , 2016 .

[26]  L. Shao,et al.  Temperature dependent dispersoid stability in ion-irradiated ferritic-martensitic dual-phase oxide-dispersion-strengthened alloy: Coherent interfaces vs. incoherent interfaces , 2016 .

[27]  F. Bergner,et al.  Irradiation hardening of Fe–9Cr-based alloys and ODS Eurofer: Effect of helium implantation and iron-ion irradiation at 300 °C including sequence effects , 2016 .

[28]  G. Odette,et al.  The ferrite/oxide interface and helium management in nano-structured ferritic alloys from the first principles , 2016 .

[29]  A. Möslang,et al.  Nanostructure evolution in ODS steels under ion irradiation , 2016 .

[30]  C. Hin,et al.  First-principles investigation of helium in Y2O3 , 2016 .

[31]  L. Shao,et al.  Microstructural changes and void swelling of a 12Cr ODS ferritic-martensitic alloy after high-dpa self-ion irradiation , 2015 .

[32]  J. Aktaa,et al.  Microstructural characterization of Eurofer-97 and Eurofer-ODS steels before and after multi-beam ion irradiations at JANNUS Saclay facility , 2015 .

[33]  W. Lai,et al.  Interaction between vacancies and the α-Fe/Y2O3 interface: A first-principles study , 2015 .

[34]  E. E. Zhurkin,et al.  Interaction of He and He–V clusters with self-interstitials and dislocations defects in bcc Fe , 2015 .

[35]  P. Edmondson,et al.  Influence of irradiation temperature on microstructure of EU batch of ODS Eurofer97 steel irradiated with neutrons , 2014 .

[36]  P. Edmondson,et al.  A structure–property correlation study of neutron irradiation induced damage in EU batch of ODS Eurofer97 steel , 2014 .

[37]  R. Kögler,et al.  The effect of dual Fe+/He+ ion beam irradiation on microstructural changes in FeCrAl ODS alloys , 2014 .

[38]  Adrian Barbu,et al.  Single- and dual-beam in situ irradiations of high-purity iron in a transmission electron microscope: Effects of heavy ion irradiation and helium injection , 2014 .

[39]  S. M. Ivanov,et al.  Tensile properties and microstructure of helium implanted EUROFER ODS , 2013 .

[40]  Qunying Huang,et al.  Recent progress of R&D activities on reduced activation ferritic/martensitic steels , 2013 .

[41]  R. Schäublin,et al.  Impact of He and Cr on defect accumulation in ion-irradiated ultrahigh-purity Fe(Cr) alloys , 2013 .

[42]  R. Stoller,et al.  On the use of SRIM for computing radiation damage exposure , 2013 .

[43]  V. Shutthanandan,et al.  Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels , 2013 .

[44]  D. Edwards,et al.  TEM characterization of dislocation loops in irradiated bcc Fe-based steels , 2013 .

[45]  D. Edwards,et al.  Multislice simulation of transmission electron microscopy imaging of helium bubbles in Fe. , 2012, Journal of electron microscopy.

[46]  Y. Carlan,et al.  Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials , 2012 .

[47]  Zhe-feng Zhang,et al.  General relationship between strength and hardness , 2011 .

[48]  J. Aktaa,et al.  Mechanical properties and TEM examination of RAFM steels irradiated up to 70 dpa in BOR-60 , 2011 .

[49]  A. Möslang,et al.  Characterization of radiation induced defects in EUROFER 97 after neutron irradiation , 2011 .

[50]  Ryuta Kasada,et al.  A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques , 2011 .

[51]  Masashi Watanabe,et al.  In situ observation of damage structure in ODS austenitic steel during electron irradiation , 2011 .

[52]  Jae Hoon Lee Microstructure and Strengthening Mechanisms of Oxide Dispersion Strengthened Ferritic Alloy , 2011 .

[53]  W. Lai,et al.  Vacancy formation and clustering behavior in Y2O3 by first principles , 2011 .

[54]  A. Möslang,et al.  Investigation of oxide particles in unirradiated ODS Eurofer by tomographic atom probe , 2011 .

[55]  S. Zinkle,et al.  Structural materials for fission & fusion energy , 2009 .

[56]  K. Nordlund,et al.  Fast three dimensional migration of He clusters in bcc Fe and Fe–Cr alloys , 2009 .

[57]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[58]  R. Schäublin,et al.  Helium effects on displacement cascades in α-iron , 2008 .

[59]  S. Thevuthasan,et al.  Radiation response of a 9 chromium oxide dispersion strengthened steel to heavy ion irradiation , 2008 .

[60]  H. Ullmaier,et al.  Dislocation loops and bubbles in oxide dispersion strengthened ferritic steel after helium implantation under stress , 2008 .

[61]  S. Thevuthasan,et al.  The Stability of 9Cr-ODS Oxide Particles Under Heavy-Ion Irradiation , 2005 .

[62]  I. Monnet,et al.  Microstructural investigation of the stability under irradiation of oxide dispersion strengthened ferritic steels , 2004 .

[63]  Steven J. Zinkle,et al.  Observation and analysis of defect cluster production and interactions with dislocations , 2004 .

[64]  Shigeharu Ukai,et al.  Perspective of ODS alloys application in nuclear environments , 2002 .

[65]  K. Arakawa,et al.  Evolution of point defect clusters in pure iron under low-energy He+ irradiation , 2001 .

[66]  K. Shiba,et al.  Effect of helium production on swelling of F82H irradiated in HFIR , 2000 .

[67]  Naoyuki Hashimoto,et al.  Defect and void evolution in oxide dispersion strengthened ferritic steels under 3.2 MeV Fe+ ion irradiation with simultaneous helium injection , 2000 .

[68]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[69]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[70]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[71]  H. Trinkaus,et al.  Radiation hardening revisited: role of intracascade clustering , 1997 .

[72]  G. E. Lucas,et al.  The evolution of mechanical property change in irradiated austenitic stainless steels , 1993 .