A Blind Multiple Watermarks based on Human Visual Characteristics

Digital watermarking is an alternative solution to prevent unauthorized duplication, distribution and breach of ownership right. This paper proposes a watermarking scheme for multiple watermarks embedding. The embedding of multiple watermarks use a block-based scheme based on human visual characteristics. A threshold is used to determine the watermark values by modifying first column of the orthogonal U matrix obtained from Singular Value Decomposition (SVD). The tradeoff between normalize cross-correlation and imperceptibility of watermarked image from quantization steps was used to achieve an optimal threshold value. The results show that our proposed multiple watermarks scheme exhibit robustness against signal processing attacks. The proposed scheme demonstrates that the watermark recovery from chrominance blue was resistant against different types of attacks.

[1]  G. Yamuna,et al.  Comparison of multiple watermarking techniques using genetic algorithms , 2016 .

[2]  Jeng-Shyang Pan,et al.  Tabu search based multi-watermarks embedding algorithm with multiple description coding , 2011, Inf. Sci..

[3]  hao-li Jia,et al.  novel blind color images watermarking based on SVD , 2014 .

[4]  A. K. Pal,et al.  A blind DCT based color watermarking algorithm for embedding multiple watermarks , 2017 .

[5]  Ferda Ernawan,et al.  An efficient image compression technique using Tchebichef bit allocation , 2017 .

[6]  Kuo-Liang Chung,et al.  On SVD-based watermarking algorithm , 2007, Appl. Math. Comput..

[7]  Hong-Xia Wang,et al.  Restudy on SVD-based watermarking scheme , 2008, Appl. Math. Comput..

[8]  Jasni Mohamad Zain,et al.  Bit allocation strategy based on Psychovisual threshold in image compression , 2017, Multimedia Tools and Applications.

[9]  William K. Pratt,et al.  Digital image processing, 2nd Edition , 1991, A Wiley-Interscience publication.

[10]  S. Behnia,et al.  Multiple-watermarking scheme based on improved chaotic maps , 2010 .

[11]  Nur Azman Abu,et al.  Adaptive Tchebichef moment transform Image Compression using Psychovisual Model , 2013, J. Comput. Sci..

[12]  S. Shahrin,et al.  Image Watermarking Using Psychovisual Threshold over the Edge , 2013, ICT-EurAsia.

[13]  Mohamed Boussif,et al.  New Watermarking/Encryption Method for Medical Imaging Full Protection in m-Health , 2017 .

[14]  Mehdi Khalili,et al.  DCT-Arnold chaotic based watermarking using JPEG-YCbCr , 2015 .

[15]  Mustaffa Zuriani,et al.  An Efficient Image Compression Using Bit Allocation based on Psychovisual Threshold , 2016 .

[17]  Ernawan Ferda,et al.  Psychovisual Threshold On Large Tchebichef Moment For Image Compression , 2014 .

[18]  F. Ernawan,et al.  THE OPTIMAL QUANTIZATION MATRICES FOR JPEG IMAGE COMPRESSION FROM PSYCHOVISUAL THRESHOLD , 2014 .

[19]  Chao Han,et al.  A DCT-SVD Domain Watermarking for Color Digital Image Based on Compressed Sensing Theory and Chaos Theory , 2014, 2014 Seventh International Symposium on Computational Intelligence and Design.

[20]  Asifullah Khan,et al.  Authentication and recovery of images using multiple watermarks , 2010, Comput. Electr. Eng..

[21]  Nur Azman Abu,et al.  A Novel Psychovisual Threshold on Large DCT for Image Compression , 2015, TheScientificWorldJournal.

[22]  Nur Azman Abu,et al.  TMT quantization table generation based on psychovisual threshold for image compression , 2013, 2013 International Conference of Information and Communication Technology (ICoICT).

[23]  Ch. Srinivasa Rao,et al.  A Hybrid Digital Watermarking Approach Using Wavelets and LSB , 2017 .

[24]  Chin-Chen Chang,et al.  SVD-based digital image watermarking scheme , 2005, Pattern Recognit. Lett..

[25]  Shampa Chakraverty,et al.  Enabling information recovery with ownership using robust multiple watermarks , 2016, J. Inf. Secur. Appl..

[26]  Chih-Chin Lai,et al.  An improved SVD-based watermarking scheme using human visual characteristics , 2011 .

[27]  Nur Azman Abu,et al.  Psychovisual Model on Discrete Orthonormal Transform , 2013 .

[28]  Millie Pant,et al.  A robust image watermarking technique using SVD and differential evolution in DCT domain , 2014 .

[29]  Ling-Yuan Hsu,et al.  Exploring DWT-SVD-DCT feature parameters for robust multiple watermarking against JPEG and JPEG2000 compression , 2015, Comput. Electr. Eng..

[30]  Shampa Chakraverty,et al.  A robust multiple watermarking technique for information recovery , 2014, 2014 IEEE International Advance Computing Conference (IACC).

[31]  Nur Azman Abu,et al.  An Optimal Tchebichef Moment Quantization using Psychovisual Threshold for Image Compression , 2014 .

[32]  N. A. Abu,et al.  A generic psychovisual error threshold for the quantization table generation on JPEG image compression , 2013, 2013 IEEE 9th International Colloquium on Signal Processing and its Applications.

[33]  Ali Safa Sadiq,et al.  An Improved Imperceptibility and Robustness of 4 x 4 DCT-SVD Image Watermarking Using Modified Entropy , 2017 .

[34]  Ferda Ernawan,et al.  Robust Image Watermarking Based on Psychovisual Threshold , 2016 .

[35]  Ferda Ernawan,et al.  Block-based Tchebichef image watermarking scheme using psychovisual threshold , 2016, 2016 2nd International Conference on Science and Technology-Computer (ICST).

[36]  Nur Azman Abu,et al.  An Adaptive JPEG Image Compression Using Psychovisual Model , 2014 .