Precise and fast computation of inverse Fermi-Dirac integral of order 1/2 by minimax rational function approximation

The single and double precision procedures are developed for the inverse Fermi-Dirac integral of order 1/2 by the minimax rational function approximation. The maximum error of the new approximations is one and 7 machine epsilons in the single and double precision computations, respectively. Meanwhile, the CPU time of the new approximations is so small as to be comparable to that of elementary functions. As a result, the new double precision approximation achieves the 15 digit accuracy and runs 30-84% faster than Antia's 28 bit precision approximation (Antia, 1993). Also, the new single precision approximation is of the 24 bit accuracy and runs 10-86% faster than Antia's 15 bit precision approximation.

[1]  J. S. Blakemore Approximations for Fermi-Dirac integrals, especially the function F12(η) used to describe electron density in a semiconductor , 1982 .

[2]  The fermi-dirac integrals $$\mathcal{F}_p (\eta ) = (p!)^{ - 1} \mathop \smallint \limits_0^\infty \varepsilon ^p (e^{\varepsilon - \eta } + 1)^{ - 1} d\varepsilon $$ , 1957 .

[3]  N. Nilsson,et al.  An accurate approximation of the generalized einstein relation for degenerate semiconductors , 1973 .

[4]  The Fermi-Dirac integrals $$\mathcal{F}_p (\eta ) = (p!)^{ - 1} \int\limits_0^\infty {\varepsilon ^p (e^{\varepsilon - \eta } + 1} )^{ - 1} d\varepsilon $$ , 1957 .

[5]  Masatake Mori,et al.  Double Exponential Formulas for Numerical Integration , 1973 .

[6]  E. C. Stoner,et al.  The Computation of Fermi-Dirac Functions , 1938 .

[7]  W. Joyce Analytic approximations for the Fermi energy in (Al,Ga)As , 1978 .

[8]  H. M. Antia Rational Function Approximations for Fermi-Dirac Integrals , 1993 .

[9]  W. Joyce,et al.  Analytic approximations for the Fermi energy of an ideal Fermi gas , 1977 .

[10]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[11]  A. Sommerfeld Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik: I. Teil: Allgemeines, Strmungs- und Austrittsvorgnge , 1928 .

[12]  W. J. Cody,et al.  Rational Chebyshev approximations for Fermi-Dirac integrals of orders -1/2, 1/2 and 3/2 , 1967 .

[13]  T. Chang,et al.  Full range analytic approximations for Fermi energy and Fermi–Dirac integral F−1/2 in terms of F1/2 , 1989 .

[14]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[15]  A. Sommerfeld,et al.  Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik , 1928 .

[16]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[17]  N. Nilsson,et al.  Empirical approximations for the Fermi energy in a semiconductor with parabolic bands , 1978 .

[18]  D. Bednarczyk,et al.  The approximation of the Fermi-Dirac integral F12 (η) , 1978 .

[19]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[20]  Toshio Fukushima,et al.  Precise and fast computation of Fermi-Dirac integral of integer and half integer order by piecewise minimax rational approximation , 2015, Appl. Math. Comput..

[21]  Allan J. MacLeod,et al.  Algorithm 779: Fermi-Dirac functions of order -1/2, 1/2, 3/2, 5/2 , 1998, TOMS.

[22]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[23]  Toshio Fukushima,et al.  Analytical computation of generalized Fermi-Dirac integrals by truncated Sommerfeld expansions , 2014, Appl. Math. Comput..