Precise and fast computation of inverse Fermi-Dirac integral of order 1/2 by minimax rational function approximation
暂无分享,去创建一个
[1] J. S. Blakemore. Approximations for Fermi-Dirac integrals, especially the function F12(η) used to describe electron density in a semiconductor , 1982 .
[3] N. Nilsson,et al. An accurate approximation of the generalized einstein relation for degenerate semiconductors , 1973 .
[5] Masatake Mori,et al. Double Exponential Formulas for Numerical Integration , 1973 .
[6] E. C. Stoner,et al. The Computation of Fermi-Dirac Functions , 1938 .
[7] W. Joyce. Analytic approximations for the Fermi energy in (Al,Ga)As , 1978 .
[8] H. M. Antia. Rational Function Approximations for Fermi-Dirac Integrals , 1993 .
[9] W. Joyce,et al. Analytic approximations for the Fermi energy of an ideal Fermi gas , 1977 .
[10] William H. Press,et al. Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .
[11] A. Sommerfeld. Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik: I. Teil: Allgemeines, Strmungs- und Austrittsvorgnge , 1928 .
[12] W. J. Cody,et al. Rational Chebyshev approximations for Fermi-Dirac integrals of orders -1/2, 1/2 and 3/2 , 1967 .
[13] T. Chang,et al. Full range analytic approximations for Fermi energy and Fermi–Dirac integral F−1/2 in terms of F1/2 , 1989 .
[14] W. Press,et al. Numerical Recipes: The Art of Scientific Computing , 1987 .
[15] A. Sommerfeld,et al. Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik , 1928 .
[16] Ronald F. Boisvert,et al. NIST Handbook of Mathematical Functions , 2010 .
[17] N. Nilsson,et al. Empirical approximations for the Fermi energy in a semiconductor with parabolic bands , 1978 .
[18] D. Bednarczyk,et al. The approximation of the Fermi-Dirac integral F12 (η) , 1978 .
[19] Stephen Wolfram,et al. The Mathematica Book , 1996 .
[20] Toshio Fukushima,et al. Precise and fast computation of Fermi-Dirac integral of integer and half integer order by piecewise minimax rational approximation , 2015, Appl. Math. Comput..
[21] Allan J. MacLeod,et al. Algorithm 779: Fermi-Dirac functions of order -1/2, 1/2, 3/2, 5/2 , 1998, TOMS.
[22] William H. Press,et al. Numerical recipes in C. The art of scientific computing , 1987 .
[23] Toshio Fukushima,et al. Analytical computation of generalized Fermi-Dirac integrals by truncated Sommerfeld expansions , 2014, Appl. Math. Comput..