Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid

Abstract The nanofluid used was a stable colloidal suspension of magnetite (Fe 3 O 4 ) nanoparticles of average diameter 36 nm. The convective heat transfer coefficient and friction factor characteristics of Fe 3 O 4 nanofluid for flow in a circular tube is evaluated experimentally in the range of 3000  φ

[1]  Qiang Li,et al.  Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field , 2009 .

[2]  W. Roetzel,et al.  TEMPERATURE DEPENDENCE OF THERMAL CONDUCTIVITY ENHANCEMENT FOR NANOFLUIDS , 2003 .

[3]  L. E. Golovicher,et al.  Thermal conductivity of magnetite magnetic fluids , 1987 .

[4]  S. Kakaç,et al.  Review of convective heat transfer enhancement with nanofluids , 2009 .

[5]  H. Brinkman The Viscosity of Concentrated Suspensions and Solutions , 1952 .

[6]  Huaqing Xie,et al.  Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method , 2010 .

[7]  G. Peterson,et al.  Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids) , 2006 .

[8]  C. T. Nguyen,et al.  New temperature dependent thermal conductivity data for water-based nanofluids , 2009 .

[9]  K. Parekh,et al.  Magnetic field induced enhancement in thermal conductivity of magnetite nanofluid , 2010 .

[10]  Saeed Zeinali Heris,et al.  EXPERIMENTAL INVESTIGATION OF CONVECTIVE HEAT TRANSFER OF AL2O3/WATER NANOFLUID IN CIRCULAR TUBE , 2007 .

[11]  Yulong Ding,et al.  Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions , 2004 .

[12]  C. T. Nguyen,et al.  Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids , 2004 .

[13]  Seok Pil Jang,et al.  Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles , 2008 .

[14]  Young I Cho,et al.  HYDRODYNAMIC AND HEAT TRANSFER STUDY OF DISPERSED FLUIDS WITH SUBMICRON METALLIC OXIDE PARTICLES , 1998 .

[15]  Qiang Li,et al.  Experimental investigations on transport properties of magnetic fluids , 2005 .

[16]  B. Raj,et al.  Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures , 2007 .

[17]  C. T. Nguyen,et al.  HEAT TRANSFER ENHANCEMENT IN A RADIAL FLOW COOLING SYSTEM USING NANOFLUIDS , 2004 .

[18]  A. Mujumdar,et al.  Heat transfer characteristics of nanofluids: a review , 2007 .

[19]  D. Das,et al.  Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties , 2009 .

[20]  V. Gnielinski New equations for heat and mass transfer in turbulent pipe and channel flow , 1976 .

[21]  Edward J. Wasp,et al.  Solid Liquid Flow Slurry Pipeline Transportation , 1977 .

[22]  Y. Xuan,et al.  Investigation on Convective Heat Transfer and Flow Features of Nanofluids , 2003 .

[23]  H. Blasius Grenzschichten in Flüssigkeiten mit kleiner Reibung , 1907 .

[24]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[25]  N. Galanis,et al.  Heat transfer enhancement by using nanofluids in forced convection flows , 2005 .

[26]  B. Weidenfeller,et al.  Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers , 2007 .

[27]  C. Sleicher,et al.  A solution to the turbulent Graetz problem—III Fully developed and entry region heat transfer rates , 1972 .

[28]  Kenneth D. Kihm,et al.  Thermal Conductivity Enhancement of Nanofluids by Brownian Motion , 2005 .

[29]  H. Masuda,et al.  ALTERATION OF THERMAL CONDUCTIVITY AND VISCOSITY OF LIQUID BY DISPERSING ULTRA-FINE PARTICLES. DISPERSION OF AL2O3, SIO2 AND TIO2 ULTRA-FINE PARTICLES , 1993 .