Complex Line Bundles over Simplicial Complexes and their Applications

Discrete vector bundles are important in Physics and recently found remarkable applications in Computer Graphics. This article approaches discrete bundles from the viewpoint of Discrete Differential Geometry, including a complete classification of discrete vector bundles over finite simplicial complexes. In particular, we obtain a discrete analogue of a theorem of Andre Weil on the classification of hermitian line bundles. Moreover, we associate to each discrete hermitian line bundle with curvature a unique piecewise-smooth hermitian line bundle of piecewise-constant curvature. This is then used to define a discrete Dirichlet energy which generalizes the well-known cotangent Laplace operator to discrete hermitian line bundles over Euclidean simplicial manifolds of arbitrary dimension.

[1]  M. Pflaum Analytic and geometric study of stratified spaces , 2001 .

[2]  Simplicial gauge theory and quantum gauge theory simulation , 2011, 1107.1405.

[3]  R. Ho Algebraic Topology , 2022 .

[4]  A. Weil Introduction a L'Etude des Varietes Kahleriennes , 1960 .

[5]  Keenan Crane,et al.  Globally optimal direction fields , 2013, ACM Trans. Graph..

[6]  R. Seiler,et al.  A Topological Look at the Quantum Hall Effect , 2003 .

[7]  Tore G. Halvorsen,et al.  A simplicial gauge theory , 2010, 1006.2059.

[8]  R. Seiler,et al.  Models of the Hofstadter‐type , 1996 .

[9]  Aharonov-Bohm effect in higher genus materials , 2003, cond-mat/0310292.

[10]  B. Kostant Quantization and unitary representations , 1970 .

[11]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[12]  Yiying Tong,et al.  Discrete differential forms for computational modeling , 2005, SIGGRAPH Courses.

[13]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[14]  Keenan Crane,et al.  Stripe patterns on surfaces , 2015, ACM Trans. Graph..

[15]  C. Carathéodory,et al.  H. Seifert u. W. Threlfall, Lehrbuch der Topologie. VII u. 353 S., mit 132 Fig. Leipzig u. Berlin 1934, B. G. Teubner. Geb. 20 M , 1935 .

[16]  Peter Schröder,et al.  Smoke rings from smoke , 2014, ACM Trans. Graph..

[17]  Snorre H. Christiansen,et al.  A Gauge Invariant Discretization on Simplicial Grids of the Schrödinger Eigenvalue Problem in an Electromagnetic Field , 2011, SIAM J. Numer. Anal..

[18]  Kent E. Morrison Yang-Mills connections on surfaces and representations of the path group , 1991, 1411.6676.

[19]  On Some Recent Interactions Between Mathematics and Physics , 1985, Canadian Mathematical Bulletin.

[20]  Tomohiro Sasamoto,et al.  Phase transitions of subset sum and Shannon's limit in source coding , 2003 .

[21]  J. Sniatycki Lectures on Geometric Quantization , 2016 .