Eyeglasses-free display

Millions of people worldwide need glasses or contact lenses to see or read properly. We introduce a computational display technology that predistorts the presented content for an observer, so that the target image is perceived without the need for eyewear. By designing optics in concert with prefiltering algorithms, the proposed display architecture achieves significantly higher resolution and contrast than prior approaches to vision-correcting image display. We demonstrate that inexpensive light field displays driven by efficient implementations of 4D prefiltering algorithms can produce the desired vision-corrected imagery, even for higher-order aberrations that are difficult to be corrected with glasses. The proposed computational display architecture is evaluated in simulation and with a low-cost prototype device.

[1]  G. Lippmann Epreuves reversibles donnant la sensation du relief , 1908 .

[2]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[3]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[4]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[5]  T. Wong,et al.  Prevalence and risk factors for refractive errors in adult Chinese in Singapore. , 2000, Investigative ophthalmology & visual science.

[6]  Harry Shum,et al.  Plenoptic sampling , 2000, SIGGRAPH.

[7]  Armando Barreto,et al.  Pre-compensation for high-order aberrations of the human eye using on-screen image deconvolution , 2003, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439).

[8]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[9]  Martin S. Banks,et al.  A stereo display prototype with multiple focal distances , 2004, SIGGRAPH 2004.

[10]  Ren Ng Fourier Slice Photography , 2005 .

[11]  Pat Hanrahan,et al.  Digital correction of lens aberrations in light field photography , 2006, International Optical Design Conference.

[12]  Yasuhiro Takaki,et al.  High-Density Directional Display for Generating Natural Three-Dimensional Images , 2006, Proceedings of the IEEE.

[13]  P. Debevec,et al.  Rendering for an interactive 360° light field display , 2007, ACM Trans. Graph..

[14]  Hideshi Yamada,et al.  Rendering for an interactive 360° light field display , 2007, ACM Trans. Graph..

[15]  Ravi Ramamoorthi,et al.  A first-order analysis of lighting, shading, and shadows , 2007, TOGS.

[16]  Gregg E. Favalora,et al.  Occlusion-capable multiview volumetric three-dimensional display. , 2007, Applied optics.

[17]  John I. Yellott,et al.  Correcting spurious resolution in defocused images , 2007, Electronic Imaging.

[18]  F. Ferris,et al.  Increased prevalence of myopia in the United States between 1971-1972 and 1999-2004. , 2009, Archives of ophthalmology.

[19]  Frédo Durand,et al.  4D frequency analysis of computational cameras for depth of field extension , 2009, SIGGRAPH '09.

[20]  James Gao,et al.  High-speed switchable lens enables the development of a volumetric stereoscopic display. , 2009, Optics express.

[21]  Douglas Lanman,et al.  Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization , 2010, ACM Trans. Graph..

[22]  Manuel Menezes de Oliveira Neto,et al.  NETRA: interactive display for estimating refractive errors and focal range , 2010, ACM Trans. Graph..

[23]  Fu-Chung Huang,et al.  A Framework for Aberration Compensated Displays , 2011 .

[24]  Manuel Menezes de Oliveira Neto,et al.  CATRA: interactive measuring and modeling of cataracts , 2011, ACM Trans. Graph..

[25]  Homer H. Chen,et al.  Light Field Analysis for Modeling Image Formation , 2011, IEEE Transactions on Image Processing.

[26]  G. Taubin,et al.  Mask-based light field capture and display , 2011 .

[27]  Wolfgang Heidrich,et al.  HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions , 2011, SIGGRAPH 2011.

[28]  Gordon Wetzstein,et al.  Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays , 2011, SIGGRAPH 2011.

[29]  F. Durand A Frequency Analysis of Light Transport , 2011 .

[30]  Gordon Wetzstein,et al.  Tensor displays , 2012, ACM Trans. Graph..

[31]  Daniel G. Aliaga,et al.  Tailored displays to compensate for visual aberrations , 2012, ACM Trans. Graph..

[32]  Douglas Lanman,et al.  Correcting for optical aberrations using multilayer displays , 2012, ACM Trans. Graph..

[33]  Gordon Wetzstein,et al.  A survey on computational displays: Pushing the boundaries of optics, computation, and perception , 2013, Comput. Graph..

[34]  Gordon Wetzstein,et al.  Focus 3D: Compressive accommodation display , 2013, TOGS.

[35]  Gordon Wetzstein,et al.  Computational light field display for correcting visual aberrations , 2013, SIGGRAPH '13.

[36]  Douglas Lanman,et al.  Near-eye light field displays , 2013, SIGGRAPH Emerging Technologies.

[37]  Gordon Wetzstein,et al.  A compressive light field projection system , 2014, SIGGRAPH '14.