General variational approach to the interpolation problem

[1]  Robert J. Renka,et al.  Interpolatory tension splines with automatic selection of tension factors , 1987 .

[2]  T. A. Foley Interpolation and approximation of 3-D and 4-D scattered data , 1987 .

[3]  Peter Lancaster,et al.  Curve and surface fitting - an introduction , 1986 .

[4]  A class of cubic splines obtained through minimum conditions , 1986 .

[5]  A. K. Cline,et al.  A triangle-based $C^1$ interpolation method , 1984 .

[6]  O. Dubrule Comparing splines and kriging , 1984 .

[7]  Demetri Terzopoulos Multi-Level Reconstruction of Visual Surfaces: Variational Principles and Finite Element Representations , 1982 .

[8]  R. Franke Smooth Interpolation of Scattered Data by Local Thin Plate Splines , 1982 .

[9]  Nira Dyn,et al.  Construction of surface spline interpolants of scattered data over finite domains , 1982 .

[10]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[11]  J. Meinguet Multivariate interpolation at arbitrary points made simple , 1979 .

[12]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[13]  G. Gilat,et al.  Method for smooth approximation of data , 1977 .

[14]  Steven Pruess,et al.  Properties of splines in tension , 1976 .

[15]  Jean Duchon,et al.  Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .

[16]  Ian Briggs Machine contouring using minimum curvature , 1974 .

[17]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[18]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .