General variational approach to the interpolation problem
暂无分享,去创建一个
[1] Robert J. Renka,et al. Interpolatory tension splines with automatic selection of tension factors , 1987 .
[2] T. A. Foley. Interpolation and approximation of 3-D and 4-D scattered data , 1987 .
[3] Peter Lancaster,et al. Curve and surface fitting - an introduction , 1986 .
[4] A class of cubic splines obtained through minimum conditions , 1986 .
[5] A. K. Cline,et al. A triangle-based $C^1$ interpolation method , 1984 .
[6] O. Dubrule. Comparing splines and kriging , 1984 .
[7] Demetri Terzopoulos. Multi-Level Reconstruction of Visual Surfaces: Variational Principles and Finite Element Representations , 1982 .
[8] R. Franke. Smooth Interpolation of Scattered Data by Local Thin Plate Splines , 1982 .
[9] Nira Dyn,et al. Construction of surface spline interpolants of scattered data over finite domains , 1982 .
[10] R. Franke. Scattered data interpolation: tests of some methods , 1982 .
[11] J. Meinguet. Multivariate interpolation at arbitrary points made simple , 1979 .
[12] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[13] G. Gilat,et al. Method for smooth approximation of data , 1977 .
[14] Steven Pruess,et al. Properties of splines in tension , 1976 .
[15] Jean Duchon,et al. Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .
[16] Ian Briggs. Machine contouring using minimum curvature , 1974 .
[17] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[18] D. F. Hays,et al. Table of Integrals, Series, and Products , 1966 .